diff --git a/Graphs/A*.py b/Graphs/A*.py
new file mode 100644
index 000000000..2ca9476e5
--- /dev/null
+++ b/Graphs/A*.py
@@ -0,0 +1,101 @@
+
+grid = [[0, 1, 0, 0, 0, 0],
+ [0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles
+ [0, 1, 0, 0, 0, 0],
+ [0, 1, 0, 0, 1, 0],
+ [0, 0, 0, 0, 1, 0]]
+
+'''
+heuristic = [[9, 8, 7, 6, 5, 4],
+ [8, 7, 6, 5, 4, 3],
+ [7, 6, 5, 4, 3, 2],
+ [6, 5, 4, 3, 2, 1],
+ [5, 4, 3, 2, 1, 0]]'''
+
+init = [0, 0]
+goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x]
+cost = 1
+
+#the cost map which pushes the path closer to the goal
+heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
+for i in range(len(grid)):
+ for j in range(len(grid[0])):
+ heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
+ if grid[i][j] == 1:
+ heuristic[i][j] = 99 #added extra penalty in the heuristic map
+
+
+#the actions we can take
+delta = [[-1, 0 ], # go up
+ [ 0, -1], # go left
+ [ 1, 0 ], # go down
+ [ 0, 1 ]] # go right
+
+
+#function to search the path
+def search(grid,init,goal,cost,heuristic):
+
+ closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid
+ closed[init[0]][init[1]] = 1
+ action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid
+
+ x = init[0]
+ y = init[1]
+ g = 0
+ f = g + heuristic[init[0]][init[0]]
+ cell = [[f, g, x, y]]
+
+ found = False # flag that is set when search is complete
+ resign = False # flag set if we can't find expand
+
+ while not found and not resign:
+ if len(cell) == 0:
+ resign = True
+ return "FAIL"
+ else:
+ cell.sort()#to choose the least costliest action so as to move closer to the goal
+ cell.reverse()
+ next = cell.pop()
+ x = next[2]
+ y = next[3]
+ g = next[1]
+ f = next[0]
+
+
+ if x == goal[0] and y == goal[1]:
+ found = True
+ else:
+ for i in range(len(delta)):#to try out different valid actions
+ x2 = x + delta[i][0]
+ y2 = y + delta[i][1]
+ if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
+ if closed[x2][y2] == 0 and grid[x2][y2] == 0:
+ g2 = g + cost
+ f2 = g2 + heuristic[x2][y2]
+ cell.append([f2, g2, x2, y2])
+ closed[x2][y2] = 1
+ action[x2][y2] = i
+ invpath = []
+ x = goal[0]
+ y = goal[1]
+ invpath.append([x, y])#we get the reverse path from here
+ while x != init[0] or y != init[1]:
+ x2 = x - delta[action[x][y]][0]
+ y2 = y - delta[action[x][y]][1]
+ x = x2
+ y = y2
+ invpath.append([x, y])
+
+ path = []
+ for i in range(len(invpath)):
+ path.append(invpath[len(invpath) - 1 - i])
+ print "ACTION MAP"
+ for i in range(len(action)):
+ print action[i]
+
+ return path
+
+a = search(grid,init,goal,cost,heuristic)
+for i in range(len(a)):
+ print a[i]
+
diff --git a/Neural_Network/convolution_neural_network.py b/Neural_Network/convolution_neural_network.py
new file mode 100644
index 000000000..d8ab0d2e5
--- /dev/null
+++ b/Neural_Network/convolution_neural_network.py
@@ -0,0 +1,305 @@
+#-*- coding: utf-8 -*-
+
+'''
+ - - - - - -- - - - - - - - - - - - - - - - - - - - - - -
+ Name - - CNN - Convolution Neural Network For Photo Recognizing
+ Goal - - Recognize Handing Writting Word Photo
+ Detail:Total 5 layers neural network
+ * Convolution layer
+ * Pooling layer
+ * Input layer layer of BP
+ * Hiden layer of BP
+ * Output layer of BP
+ Author: Stephen Lee
+ Github: 245885195@qq.com
+ Date: 2017.9.20
+ - - - - - -- - - - - - - - - - - - - - - - - - - - - - -
+ '''
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+class CNN():
+
+ def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
+ '''
+ :param conv1_get: [a,c,d],size, number, step of convolution kernel
+ :param size_p1: pooling size
+ :param bp_num1: units number of flatten layer
+ :param bp_num2: units number of hidden layer
+ :param bp_num3: units number of output layer
+ :param rate_w: rate of weight learning
+ :param rate_t: rate of threshold learning
+ '''
+ self.num_bp1 = bp_num1
+ self.num_bp2 = bp_num2
+ self.num_bp3 = bp_num3
+ self.conv1 = conv1_get[:2]
+ self.step_conv1 = conv1_get[2]
+ self.size_pooling1 = size_p1
+ self.rate_weight = rate_w
+ self.rate_thre = rate_t
+ self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
+ self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
+ self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
+ self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
+ self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
+ self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
+
+
+ def save_model(self,save_path):
+ #save model dict with pickle
+ import pickle
+ model_dic = {'num_bp1':self.num_bp1,
+ 'num_bp2':self.num_bp2,
+ 'num_bp3':self.num_bp3,
+ 'conv1':self.conv1,
+ 'step_conv1':self.step_conv1,
+ 'size_pooling1':self.size_pooling1,
+ 'rate_weight':self.rate_weight,
+ 'rate_thre':self.rate_thre,
+ 'w_conv1':self.w_conv1,
+ 'wkj':self.wkj,
+ 'vji':self.vji,
+ 'thre_conv1':self.thre_conv1,
+ 'thre_bp2':self.thre_bp2,
+ 'thre_bp3':self.thre_bp3}
+ with open(save_path, 'wb') as f:
+ pickle.dump(model_dic, f)
+
+ print('Model saved: %s'% save_path)
+
+ @classmethod
+ def ReadModel(cls,model_path):
+ #read saved model
+ import pickle
+ with open(model_path, 'rb') as f:
+ model_dic = pickle.load(f)
+
+ conv_get= model_dic.get('conv1')
+ conv_get.append(model_dic.get('step_conv1'))
+ size_p1 = model_dic.get('size_pooling1')
+ bp1 = model_dic.get('num_bp1')
+ bp2 = model_dic.get('num_bp2')
+ bp3 = model_dic.get('num_bp3')
+ r_w = model_dic.get('rate_weight')
+ r_t = model_dic.get('rate_thre')
+ #create model instance
+ conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
+ #modify model parameter
+ conv_ins.w_conv1 = model_dic.get('w_conv1')
+ conv_ins.wkj = model_dic.get('wkj')
+ conv_ins.vji = model_dic.get('vji')
+ conv_ins.thre_conv1 = model_dic.get('thre_conv1')
+ conv_ins.thre_bp2 = model_dic.get('thre_bp2')
+ conv_ins.thre_bp3 = model_dic.get('thre_bp3')
+ return conv_ins
+
+
+ def sig(self,x):
+ return 1 / (1 + np.exp(-1*x))
+
+ def do_round(self,x):
+ return round(x, 3)
+
+ def convolute(self,data,convs,w_convs,thre_convs,conv_step):
+ #convolution process
+ size_conv = convs[0]
+ num_conv =convs[1]
+ size_data = np.shape(data)[0]
+ #get the data slice of original image data, data_focus
+ data_focus = []
+ for i_focus in range(0, size_data - size_conv + 1, conv_step):
+ for j_focus in range(0, size_data - size_conv + 1, conv_step):
+ focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
+ data_focus.append(focus)
+ #caculate the feature map of every single kernel, and saved as list of matrix
+ data_featuremap = []
+ Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
+ for i_map in range(num_conv):
+ featuremap = []
+ for i_focus in range(len(data_focus)):
+ net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map]
+ featuremap.append(self.sig(net_focus))
+ featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
+ data_featuremap.append(featuremap)
+
+ #expanding the data slice to One dimenssion
+ focus1_list = []
+ for each_focus in data_focus:
+ focus1_list.extend(self.Expand_Mat(each_focus))
+ focus_list = np.asarray(focus1_list)
+ return focus_list,data_featuremap
+
+ def pooling(self,featuremaps,size_pooling,type='average_pool'):
+ #pooling process
+ size_map = len(featuremaps[0])
+ size_pooled = int(size_map/size_pooling)
+ featuremap_pooled = []
+ for i_map in range(len(featuremaps)):
+ map = featuremaps[i_map]
+ map_pooled = []
+ for i_focus in range(0,size_map,size_pooling):
+ for j_focus in range(0, size_map, size_pooling):
+ focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
+ if type == 'average_pool':
+ #average pooling
+ map_pooled.append(np.average(focus))
+ elif type == 'max_pooling':
+ #max pooling
+ map_pooled.append(np.max(focus))
+ map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
+ featuremap_pooled.append(map_pooled)
+ return featuremap_pooled
+
+ def _expand(self,datas):
+ #expanding three dimension data to one dimension list
+ data_expanded = []
+ for i in range(len(datas)):
+ shapes = np.shape(datas[i])
+ data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
+ data_listed = data_listed.getA().tolist()[0]
+ data_expanded.extend(data_listed)
+ data_expanded = np.asarray(data_expanded)
+ return data_expanded
+
+ def _expand_mat(self,data_mat):
+ #expanding matrix to one dimension list
+ data_mat = np.asarray(data_mat)
+ shapes = np.shape(data_mat)
+ data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
+ return data_expanded
+
+ def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
+ '''
+ calcluate the gradient from the data slice of pool layer
+ pd_pool: list of matrix
+ out_map: the shape of data slice(size_map*size_map)
+ return: pd_all: list of matrix, [num, size_map, size_map]
+ '''
+ pd_all = []
+ i_pool = 0
+ for i_map in range(num_map):
+ pd_conv1 = np.ones((size_map, size_map))
+ for i in range(0, size_map, size_pooling):
+ for j in range(0, size_map, size_pooling):
+ pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool]
+ i_pool = i_pool + 1
+ pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map])))
+ pd_all.append(pd_conv2)
+ return pd_all
+
+ def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
+ #model traning
+ print('----------------------Start Training-------------------------')
+ print(' - - Shape: Train_Data ',np.shape(datas_train))
+ print(' - - Shape: Teach_Data ',np.shape(datas_teach))
+ rp = 0
+ all_mse = []
+ mse = 10000
+ while rp < n_repeat and mse >= error_accuracy:
+ alle = 0
+ print('-------------Learning Time %d--------------'%rp)
+ for p in range(len(datas_train)):
+ #print('------------Learning Image: %d--------------'%p)
+ data_train = np.asmatrix(datas_train[p])
+ data_teach = np.asarray(datas_teach[p])
+ data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1,
+ self.thre_conv1,conv_step=self.step_conv1)
+ data_pooled1 = self.pooling(data_conved1,self.size_pooling1)
+ shape_featuremap1 = np.shape(data_conved1)
+ '''
+ print(' -----original shape ', np.shape(data_train))
+ print(' ---- after convolution ',np.shape(data_conv1))
+ print(' -----after pooling ',np.shape(data_pooled1))
+ '''
+ data_bp_input = self._expand(data_pooled1)
+ bp_out1 = data_bp_input
+
+ bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
+ bp_out2 = self.sig(bp_net_j)
+ bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
+ bp_out3 = self.sig(bp_net_k)
+
+ #--------------Model Leaning ------------------------
+ # calcluate error and gradient---------------
+ pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
+ pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
+ pd_i_all = np.dot(pd_j_all,self.vji)
+
+ pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
+ pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
+ pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
+ shape_featuremap1[1],self.size_pooling1)
+ #weight and threshold learning process---------
+ #convolution layer
+ for k_conv in range(self.conv1[1]):
+ pd_conv_list = self._expand_mat(pd_conv1_all[k_conv])
+ delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
+
+ self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
+
+ self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
+ #all connected layer
+ self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
+ self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
+ self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
+ self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
+ # calculate the sum error of all single image
+ errors = np.sum(abs((data_teach - bp_out3)))
+ alle = alle + errors
+ #print(' ----Teach ',data_teach)
+ #print(' ----BP_output ',bp_out3)
+ rp = rp + 1
+ mse = alle/patterns
+ all_mse.append(mse)
+ def draw_error():
+ yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
+ plt.plot(all_mse, '+-')
+ plt.plot(yplot, 'r--')
+ plt.xlabel('Learning Times')
+ plt.ylabel('All_mse')
+ plt.grid(True, alpha=0.5)
+ plt.show()
+ print('------------------Training Complished---------------------')
+ print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)
+ if draw_e:
+ draw_error()
+ return mse
+
+ def predict(self,datas_test):
+ #model predict
+ produce_out = []
+ print('-------------------Start Testing-------------------------')
+ print(' - - Shape: Test_Data ',np.shape(datas_test))
+ for p in range(len(datas_test)):
+ data_test = np.asmatrix(datas_test[p])
+ data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
+ self.thre_conv1, conv_step=self.step_conv1)
+ data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
+ data_bp_input = self._expand(data_pooled1)
+
+ bp_out1 = data_bp_input
+ bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
+ bp_out2 = self.sig(bp_net_j)
+ bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
+ bp_out3 = self.sig(bp_net_k)
+ produce_out.extend(bp_out3.getA().tolist())
+ res = [list(map(self.do_round,each)) for each in produce_out]
+ return np.asarray(res)
+
+ def convolution(self,data):
+ #return the data of image after convoluting process so we can check it out
+ data_test = np.asmatrix(data)
+ data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
+ self.thre_conv1, conv_step=self.step_conv1)
+ data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
+
+ return data_conved1,data_pooled1
+
+
+if __name__ == '__main__':
+ pass
+ '''
+ I will put the example on other file
+ '''
\ No newline at end of file
diff --git a/README.md b/README.md
index 9589bccd9..70077e98f 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,4 @@
-# The Algorithms - Python [![Build Status](https://travis-ci.org/TheAlgorithms/Python.svg)](https://travis-ci.org/TheAlgorithms/Python)
+# The Algorithms - Python
### All algorithms implemented in Python (for education)
@@ -128,6 +128,13 @@ The method is named after **Julius Caesar**, who used it in his private correspo
The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communication security.
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Caesar_cipher)
+### Vigenère
+The **Vigenère cipher** is a method of encrypting alphabetic text by using a series of **interwoven Caesar ciphers** based on the letters of a keyword. It is **a form of polyalphabetic substitution**.
+The Vigenère cipher has been reinvented many times. The method was originally described by Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as the "Vigenère cipher".
+Though the cipher is easy to understand and implement, for three centuries it resisted all attempts to break it; this earned it the description **le chiffre indéchiffrable**(French for 'the indecipherable cipher').
+Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. Friedrich Kasiski was the first to publish a general method of deciphering a Vigenère cipher in 1863.
+###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher)
+
### Transposition
In cryptography, a **transposition cipher** is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed (the plaintext is reordered).
Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt.
diff --git a/data_structures/Binary Tree/binary_seach_tree.py b/data_structures/Binary Tree/binary_seach_tree.py
index 1dac948ae..0b1726534 100644
--- a/data_structures/Binary Tree/binary_seach_tree.py
+++ b/data_structures/Binary Tree/binary_seach_tree.py
@@ -8,7 +8,7 @@ class Node:
def __init__(self, label):
self.label = label
self.left = None
- self.rigt = None
+ self.right = None
def getLabel(self):
return self.label
@@ -23,10 +23,10 @@ class Node:
self.left = left
def getRight(self):
- return self.rigt
+ return self.right
def setRight(self, right):
- self.rigt = right
+ self.right = right
class BinarySearchTree:
diff --git a/data_structures/Graph/P01_BreadthFirstSearch.py b/data_structures/Graph/BreadthFirstSearch.py
similarity index 100%
rename from data_structures/Graph/P01_BreadthFirstSearch.py
rename to data_structures/Graph/BreadthFirstSearch.py
diff --git a/data_structures/Graph/Breadth_First_Search.py b/data_structures/Graph/Breadth_First_Search.py
deleted file mode 100644
index 1a3fdfd4d..000000000
--- a/data_structures/Graph/Breadth_First_Search.py
+++ /dev/null
@@ -1,70 +0,0 @@
-class GRAPH:
- """docstring for GRAPH"""
- def __init__(self, nodes):
- self.nodes=nodes
- self.graph=[[0]*nodes for i in range (nodes)]
- self.visited=[0]*nodes
-
-
- def show(self):
-
- for i in self.graph:
- for j in i:
- print(j, end=' ')
- print(' ')
- def bfs(self,v):
-
- visited = [False]*self.vertex
- visited[v - 1] = True
- print('%d visited' % (v))
-
- queue = [v - 1]
- while len(queue) > 0:
- v = queue[0]
- for u in range(self.vertex):
- if self.graph[v][u] == 1:
- if visited[u]== False:
- visited[u] = True
- queue.append(u)
- print('%d visited' % (u +1))
- queue.pop(0)
-
-g = Graph(10)
-
-g.add_edge(1,2)
-g.add_edge(1,3)
-g.add_edge(1,4)
-g.add_edge(2,5)
-g.add_edge(3,6)
-g.add_edge(3,7)
-g.add_edge(4,8)
-g.add_edge(5,9)
-g.add_edge(6,10)
-g.bfs(4)
-=======
- print self.graph
-
- def add_edge(self, i, j):
- self.graph[i][j]=1
- self.graph[j][i]=1
-
- def bfs(self,s):
- queue=[s]
- self.visited[s]=1
- while len(queue)!=0:
- x=queue.pop(0)
- print(x)
- for i in range(0,self.nodes):
- if self.graph[x][i]==1 and self.visited[i]==0:
- queue.append(i)
- self.visited[i]=1
-
-n=int(input("Enter the number of Nodes : "))
-g=GRAPH(n)
-e=int(input("Enter the no of edges : "))
-print("Enter the edges (u v)")
-for i in range(0,e):
- u,v=map(int, raw_input().split())
- g.add_edge(u,v)
-s=int(input("Enter the source node :"))
-g.bfs(s)
diff --git a/data_structures/Graph/Deep_First_Search.py b/data_structures/Graph/Deep_First_Search.py
deleted file mode 100644
index 656ddfbaf..000000000
--- a/data_structures/Graph/Deep_First_Search.py
+++ /dev/null
@@ -1,32 +0,0 @@
-class GRAPH:
- """docstring for GRAPH"""
- def __init__(self, nodes):
- self.nodes=nodes
- self.graph=[[0]*nodes for i in range (nodes)]
- self.visited=[0]*nodes
-
-
- def show(self):
- print self.graph
-
- def add_edge(self, i, j):
- self.graph[i][j]=1
- self.graph[j][i]=1
-
- def dfs(self,s):
- self.visited[s]=1
- print(s)
- for i in range(0,self.nodes):
- if self.visited[i]==0 and self.graph[s][i]==1:
- self.dfs(i)
-
-
-n=int(input("Enter the number of Nodes : "))
-g=GRAPH(n)
-e=int(input("Enter the no of edges : "))
-print("Enter the edges (u v)")
-for i in range(0,e):
- u,v=map(int, raw_input().split())
- g.add_edge(u,v)
-s=int(input("Enter the source node :"))
-g.dfs(s)
diff --git a/data_structures/Graph/P02_DepthFirstSearch.py b/data_structures/Graph/DepthFirstSearch.py
similarity index 100%
rename from data_structures/Graph/P02_DepthFirstSearch.py
rename to data_structures/Graph/DepthFirstSearch.py
diff --git a/data_structures/Graph/dijkstra_algorithm.py b/data_structures/Graph/dijkstra_algorithm.py
new file mode 100644
index 000000000..c43ff37f5
--- /dev/null
+++ b/data_structures/Graph/dijkstra_algorithm.py
@@ -0,0 +1,211 @@
+# Title: Dijkstra's Algorithm for finding single source shortest path from scratch
+# Author: Shubham Malik
+# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
+
+import math
+import sys
+# For storing the vertex set to retreive node with the lowest distance
+
+
+class PriorityQueue:
+ # Based on Min Heap
+ def __init__(self):
+ self.cur_size = 0
+ self.array = []
+ self.pos = {} # To store the pos of node in array
+
+ def isEmpty(self):
+ return self.cur_size == 0
+
+ def min_heapify(self, idx):
+ lc = self.left(idx)
+ rc = self.right(idx)
+ if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]:
+ smallest = lc
+ else:
+ smallest = idx
+ if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]:
+ smallest = rc
+ if smallest != idx:
+ self.swap(idx, smallest)
+ self.min_heapify(smallest)
+
+ def insert(self, tup):
+ # Inserts a node into the Priority Queue
+ self.pos[tup[1]] = self.cur_size
+ self.cur_size += 1
+ self.array.append((sys.maxsize, tup[1]))
+ self.decrease_key((sys.maxsize, tup[1]), tup[0])
+
+ def extract_min(self):
+ # Removes and returns the min element at top of priority queue
+ min_node = self.array[0][1]
+ self.array[0] = self.array[self.cur_size - 1]
+ self.cur_size -= 1
+ self.min_heapify(1)
+ del self.pos[min_node]
+ return min_node
+
+ def left(self, i):
+ # returns the index of left child
+ return 2 * i + 1
+
+ def right(self, i):
+ # returns the index of right child
+ return 2 * i + 2
+
+ def par(self, i):
+ # returns the index of parent
+ return math.floor(i / 2)
+
+ def swap(self, i, j):
+ # swaps array elements at indices i and j
+ # update the pos{}
+ self.pos[self.array[i][1]] = j
+ self.pos[self.array[j][1]] = i
+ temp = self.array[i]
+ self.array[i] = self.array[j]
+ self.array[j] = temp
+
+ def decrease_key(self, tup, new_d):
+ idx = self.pos[tup[1]]
+ # assuming the new_d is atmost old_d
+ self.array[idx] = (new_d, tup[1])
+ while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
+ self.swap(idx, self.par(idx))
+ idx = self.par(idx)
+
+
+class Graph:
+ def __init__(self, num):
+ self.adjList = {} # To store graph: u -> (v,w)
+ self.num_nodes = num # Number of nodes in graph
+ # To store the distance from source vertex
+ self.dist = [0] * self.num_nodes
+ self.par = [-1] * self.num_nodes # To store the path
+
+ def add_edge(self, u, v, w):
+ # Edge going from node u to v and v to u with weight w
+ # u (w)-> v, v (w) -> u
+ # Check if u already in graph
+ if u in self.adjList.keys():
+ self.adjList[u].append((v, w))
+ else:
+ self.adjList[u] = [(v, w)]
+
+ # Assuming undirected graph
+ if v in self.adjList.keys():
+ self.adjList[v].append((u, w))
+ else:
+ self.adjList[v] = [(u, w)]
+
+ def show_graph(self):
+ # u -> v(w)
+ for u in self.adjList:
+ print(u, '->', ' -> '.join(str("{}({})".format(v, w))
+ for v, w in self.adjList[u]))
+
+ def dijkstra(self, src):
+ # Flush old junk values in par[]
+ self.par = [-1] * self.num_nodes
+ # src is the source node
+ self.dist[src] = 0
+ Q = PriorityQueue()
+ Q.insert((0, src)) # (dist from src, node)
+ for u in self.adjList.keys():
+ if u != src:
+ self.dist[u] = sys.maxsize # Infinity
+ self.par[u] = -1
+
+ while not Q.isEmpty():
+ u = Q.extract_min() # Returns node with the min dist from source
+ # Update the distance of all the neighbours of u and
+ # if their prev dist was INFINITY then push them in Q
+ for v, w in self.adjList[u]:
+ new_dist = self.dist[u] + w
+ if self.dist[v] > new_dist:
+ if self.dist[v] == sys.maxsize:
+ Q.insert((new_dist, v))
+ else:
+ Q.decrease_key((self.dist[v], v), new_dist)
+ self.dist[v] = new_dist
+ self.par[v] = u
+
+ # Show the shortest distances from src
+ self.show_distances(src)
+
+ def show_distances(self, src):
+ print("Distance from node: {}".format(src))
+ for u in range(self.num_nodes):
+ print('Node {} has distance: {}'.format(u, self.dist[u]))
+
+ def show_path(self, src, dest):
+ # To show the shortest path from src to dest
+ # WARNING: Use it *after* calling dijkstra
+ path = []
+ cost = 0
+ temp = dest
+ # Backtracking from dest to src
+ while self.par[temp] != -1:
+ path.append(temp)
+ if temp != src:
+ for v, w in self.adjList[temp]:
+ if v == self.par[temp]:
+ cost += w
+ break
+ temp = self.par[temp]
+ path.append(src)
+ path.reverse()
+
+ print('----Path to reach {} from {}----'.format(dest, src))
+ for u in path:
+ print('{}'.format(u), end=' ')
+ if u != dest:
+ print('-> ', end='')
+
+ print('\nTotal cost of path: ', cost)
+
+
+if __name__ == '__main__':
+ graph = Graph(9)
+ graph.add_edge(0, 1, 4)
+ graph.add_edge(0, 7, 8)
+ graph.add_edge(1, 2, 8)
+ graph.add_edge(1, 7, 11)
+ graph.add_edge(2, 3, 7)
+ graph.add_edge(2, 8, 2)
+ graph.add_edge(2, 5, 4)
+ graph.add_edge(3, 4, 9)
+ graph.add_edge(3, 5, 14)
+ graph.add_edge(4, 5, 10)
+ graph.add_edge(5, 6, 2)
+ graph.add_edge(6, 7, 1)
+ graph.add_edge(6, 8, 6)
+ graph.add_edge(7, 8, 7)
+ graph.show_graph()
+ graph.dijkstra(0)
+ graph.show_path(0, 4)
+
+# OUTPUT
+# 0 -> 1(4) -> 7(8)
+# 1 -> 0(4) -> 2(8) -> 7(11)
+# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
+# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
+# 3 -> 2(7) -> 4(9) -> 5(14)
+# 8 -> 2(2) -> 6(6) -> 7(7)
+# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
+# 4 -> 3(9) -> 5(10)
+# 6 -> 5(2) -> 7(1) -> 8(6)
+# Distance from node: 0
+# Node 0 has distance: 0
+# Node 1 has distance: 4
+# Node 2 has distance: 12
+# Node 3 has distance: 19
+# Node 4 has distance: 21
+# Node 5 has distance: 11
+# Node 6 has distance: 9
+# Node 7 has distance: 8
+# Node 8 has distance: 14
+# ----Path to reach 4 from 0----
+# 0 -> 7 -> 6 -> 5 -> 4
+# Total cost of path: 21
diff --git a/data_structures/LinkedList/singly_LinkedList.py b/data_structures/LinkedList/singly_LinkedList.py
index 941e8a0fa..c9a3cec27 100644
--- a/data_structures/LinkedList/singly_LinkedList.py
+++ b/data_structures/LinkedList/singly_LinkedList.py
@@ -3,22 +3,15 @@ class Node:#create a Node
self.data=data#given data
self.next=None#given next to None
class Linked_List:
+
pass
- def insert_tail(Head,data):#insert the data at tail
- tamp=Head#create a tamp as a head
- if(tamp==None):#if linkedlist is empty
- newNod=Node()#create newNode Node type and given data and next
- newNod.data=data
- newNod.next=None
- Head=newNod
+
+ def insert_tail(Head,data):
+ if(Head.next is None):
+ Head.next = Node(data)
else:
- while tamp.next!=None:#find the last Node
- tamp=tamp.next
- newNod = Node()#create a new node
- newNod.data = data
- newNod.next = None
- tamp.next=newNod#put the newnode into last node
- return Head#return first node of linked list
+ insert_tail(Head.next, data)
+
def insert_head(Head,data):
tamp = Head
if (tamp == None):
@@ -32,16 +25,18 @@ class Linked_List:
newNod.next = Head#put the Head at NewNode Next
Head=newNod#make a NewNode to Head
return Head
- def Print(Head):#print every node data
- tamp=Node()
+
+ def printList(Head):#print every node data
tamp=Head
while tamp!=None:
print(tamp.data)
tamp=tamp.next
+
def delete_head(Head):#delete from head
if Head!=None:
Head=Head.next
return Head#return new Head
+
def delete_tail(Head):#delete from tail
if Head!=None:
tamp = Node()
@@ -50,12 +45,6 @@ class Linked_List:
tamp = tamp.next
tamp.next=None#delete the last element by give next None to 2nd last Element
return Head
+
def isEmpty(Head):
- if(Head==None):#check Head is None or Not
- return True#return Ture if list is empty
- else:
- return False#check False if it's not empty
-
-
-
-
+ return Head is None #Return if Head is none
\ No newline at end of file
diff --git a/dynamic_programming/fastfibonacci.py b/dynamic_programming/fastfibonacci.py
new file mode 100644
index 000000000..5957fbe0d
--- /dev/null
+++ b/dynamic_programming/fastfibonacci.py
@@ -0,0 +1,42 @@
+"""
+This program calculates the nth Fibonacci number in O(log(n)).
+It's possible to calculate F(1000000) in less than a second.
+"""
+import sys
+
+
+# returns F(n)
+def fibonacci(n: int):
+ if n < 0:
+ raise ValueError("Negative arguments are not supported")
+ return _fib(n)[0]
+
+
+# returns (F(n), F(n-1))
+def _fib(n: int):
+ if n == 0:
+ # (F(0), F(1))
+ return (0, 1)
+ else:
+ # F(2n) = F(n)[2F(n+1) − F(n)]
+ # F(2n+1) = F(n+1)^2+F(n)^2
+ a, b = _fib(n // 2)
+ c = a * (b * 2 - a)
+ d = a * a + b * b
+ if n % 2 == 0:
+ return (c, d)
+ else:
+ return (d, c + d)
+
+
+if __name__ == "__main__":
+ args = sys.argv[1:]
+ if len(args) != 1:
+ print("Too few or too much parameters given.")
+ exit(1)
+ try:
+ n = int(args[0])
+ except ValueError:
+ print("Could not convert data to an integer.")
+ exit(1)
+ print("F(%d) = %d" % (n, fibonacci(n)))
diff --git a/dynamic_programming/fibonacci.py b/dynamic_programming/fibonacci.py
index 692cb756a..5eaa81b3e 100644
--- a/dynamic_programming/fibonacci.py
+++ b/dynamic_programming/fibonacci.py
@@ -30,7 +30,7 @@ if __name__ == '__main__':
import sys
print("\n********* Fibonacci Series Using Dynamic Programming ************\n")
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/machine_learning/decision_tree.py b/machine_learning/decision_tree.py
new file mode 100644
index 000000000..51f600cac
--- /dev/null
+++ b/machine_learning/decision_tree.py
@@ -0,0 +1,139 @@
+"""
+Implementation of a basic regression decision tree.
+Input data set: The input data set must be 1-dimensional with continuous labels.
+Output: The decision tree maps a real number input to a real number output.
+"""
+
+import numpy as np
+
+class Decision_Tree:
+ def __init__(self, depth = 5, min_leaf_size = 5):
+ self.depth = depth
+ self.decision_boundary = 0
+ self.left = None
+ self.right = None
+ self.min_leaf_size = min_leaf_size
+ self.prediction = None
+
+ def mean_squared_error(self, labels, prediction):
+ """
+ mean_squared_error:
+ @param labels: a one dimensional numpy array
+ @param prediction: a floating point value
+ return value: mean_squared_error calculates the error if prediction is used to estimate the labels
+ """
+ if labels.ndim != 1:
+ print("Error: Input labels must be one dimensional")
+
+ return np.mean((labels - prediction) ** 2)
+
+ def train(self, X, y):
+ """
+ train:
+ @param X: a one dimensional numpy array
+ @param y: a one dimensional numpy array.
+ The contents of y are the labels for the corresponding X values
+
+ train does not have a return value
+ """
+
+ """
+ this section is to check that the inputs conform to our dimensionality constraints
+ """
+ if X.ndim != 1:
+ print("Error: Input data set must be one dimensional")
+ return
+ if len(X) != len(y):
+ print("Error: X and y have different lengths")
+ return
+ if y.ndim != 1:
+ print("Error: Data set labels must be one dimensional")
+ return
+
+ if len(X) < 2 * self.min_leaf_size:
+ self.prediction = np.mean(y)
+ return
+
+ if self.depth == 1:
+ self.prediction = np.mean(y)
+ return
+
+ best_split = 0
+ min_error = self.mean_squared_error(X,np.mean(y)) * 2
+
+
+ """
+ loop over all possible splits for the decision tree. find the best split.
+ if no split exists that is less than 2 * error for the entire array
+ then the data set is not split and the average for the entire array is used as the predictor
+ """
+ for i in range(len(X)):
+ if len(X[:i]) < self.min_leaf_size:
+ continue
+ elif len(X[i:]) < self.min_leaf_size:
+ continue
+ else:
+ error_left = self.mean_squared_error(X[:i], np.mean(y[:i]))
+ error_right = self.mean_squared_error(X[i:], np.mean(y[i:]))
+ error = error_left + error_right
+ if error < min_error:
+ best_split = i
+ min_error = error
+
+ if best_split != 0:
+ left_X = X[:best_split]
+ left_y = y[:best_split]
+ right_X = X[best_split:]
+ right_y = y[best_split:]
+
+ self.decision_boundary = X[best_split]
+ self.left = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
+ self.right = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
+ self.left.train(left_X, left_y)
+ self.right.train(right_X, right_y)
+ else:
+ self.prediction = np.mean(y)
+
+ return
+
+ def predict(self, x):
+ """
+ predict:
+ @param x: a floating point value to predict the label of
+ the prediction function works by recursively calling the predict function
+ of the appropriate subtrees based on the tree's decision boundary
+ """
+ if self.prediction is not None:
+ return self.prediction
+ elif self.left or self.right is not None:
+ if x >= self.decision_boundary:
+ return self.right.predict(x)
+ else:
+ return self.left.predict(x)
+ else:
+ print("Error: Decision tree not yet trained")
+ return None
+
+def main():
+ """
+ In this demonstration we're generating a sample data set from the sin function in numpy.
+ We then train a decision tree on the data set and use the decision tree to predict the
+ label of 10 different test values. Then the mean squared error over this test is displayed.
+ """
+ X = np.arange(-1., 1., 0.005)
+ y = np.sin(X)
+
+ tree = Decision_Tree(depth = 10, min_leaf_size = 10)
+ tree.train(X,y)
+
+ test_cases = (np.random.rand(10) * 2) - 1
+ predictions = np.array([tree.predict(x) for x in test_cases])
+ avg_error = np.mean((predictions - test_cases) ** 2)
+
+ print("Test values: " + str(test_cases))
+ print("Predictions: " + str(predictions))
+ print("Average error: " + str(avg_error))
+
+
+if __name__ == '__main__':
+ main()
\ No newline at end of file
diff --git a/other/euclidean_gcd.py b/other/euclidean_gcd.py
new file mode 100644
index 000000000..13378379f
--- /dev/null
+++ b/other/euclidean_gcd.py
@@ -0,0 +1,18 @@
+# https://en.wikipedia.org/wiki/Euclidean_algorithm
+
+def euclidean_gcd(a, b):
+ while b:
+ t = b
+ b = a % b
+ a = t
+ return a
+
+def main():
+ print("GCD(3, 5) = " + str(euclidean_gcd(3, 5)))
+ print("GCD(5, 3) = " + str(euclidean_gcd(5, 3)))
+ print("GCD(1, 3) = " + str(euclidean_gcd(1, 3)))
+ print("GCD(3, 6) = " + str(euclidean_gcd(3, 6)))
+ print("GCD(6, 3) = " + str(euclidean_gcd(6, 3)))
+
+if __name__ == '__main__':
+ main()
diff --git a/searches/binary_search.py b/searches/binary_search.py
index 13b54f498..c54aa96a1 100644
--- a/searches/binary_search.py
+++ b/searches/binary_search.py
@@ -110,10 +110,10 @@ def binary_search_by_recursion(sorted_collection, item, left, right):
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
- return binary_search_by_recursion(sorted_collection, item, left, right-1)
+ return binary_search_by_recursion(sorted_collection, item, left, midpoint-1)
else:
- return binary_search_by_recursion(sorted_collection, item, left+1, right)
-
+ return binary_search_by_recursion(sorted_collection, item, midpoint+1, right)
+
def __assert_sorted(collection):
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
@@ -137,14 +137,14 @@ def __assert_sorted(collection):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
- user_input = input_function('Enter numbers separated by coma:\n')
+ user_input = input_function('Enter numbers separated by comma:\n')
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)
diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py
new file mode 100644
index 000000000..068d9c554
--- /dev/null
+++ b/searches/interpolation_search.py
@@ -0,0 +1,102 @@
+"""
+This is pure python implementation of interpolation search algorithm
+"""
+from __future__ import print_function
+import bisect
+
+
+def interpolation_search(sorted_collection, item):
+ """Pure implementation of interpolation search algorithm in Python
+ Be careful collection must be sorted, otherwise result will be
+ unpredictable
+ :param sorted_collection: some sorted collection with comparable items
+ :param item: item value to search
+ :return: index of found item or None if item is not found
+ """
+ left = 0
+ right = len(sorted_collection) - 1
+
+ while left <= right:
+ point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
+
+ #out of range check
+ if point<0 or point>=len(sorted_collection):
+ return None
+
+ current_item = sorted_collection[point]
+ if current_item == item:
+ return point
+ else:
+ if item < current_item:
+ right = point - 1
+ else:
+ left = point + 1
+ return None
+
+
+def interpolation_search_by_recursion(sorted_collection, item, left, right):
+
+ """Pure implementation of interpolation search algorithm in Python by recursion
+ Be careful collection must be sorted, otherwise result will be
+ unpredictable
+ First recursion should be started with left=0 and right=(len(sorted_collection)-1)
+ :param sorted_collection: some sorted collection with comparable items
+ :param item: item value to search
+ :return: index of found item or None if item is not found
+ """
+ point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
+
+ #out of range check
+ if point<0 or point>=len(sorted_collection):
+ return None
+
+ if sorted_collection[point] == item:
+ return point
+ elif sorted_collection[point] > item:
+ return interpolation_search_by_recursion(sorted_collection, item, left, point-1)
+ else:
+ return interpolation_search_by_recursion(sorted_collection, item, point+1, right)
+
+def __assert_sorted(collection):
+ """Check if collection is sorted, if not - raises :py:class:`ValueError`
+ :param collection: collection
+ :return: True if collection is sorted
+ :raise: :py:class:`ValueError` if collection is not sorted
+ Examples:
+ >>> __assert_sorted([0, 1, 2, 4])
+ True
+ >>> __assert_sorted([10, -1, 5])
+ Traceback (most recent call last):
+ ...
+ ValueError: Collection must be sorted
+ """
+ if collection != sorted(collection):
+ raise ValueError('Collection must be sorted')
+ return True
+
+
+if __name__ == '__main__':
+ import sys
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
+ # otherwise 2.x's input builtin function is too "smart"
+ if sys.version_info.major < 3:
+ input_function = raw_input
+ else:
+ input_function = input
+
+ user_input = input_function('Enter numbers separated by comma:\n')
+ collection = [int(item) for item in user_input.split(',')]
+ try:
+ __assert_sorted(collection)
+ except ValueError:
+ sys.exit('Sequence must be sorted to apply interpolation search')
+
+ target_input = input_function(
+ 'Enter a single number to be found in the list:\n'
+ )
+ target = int(target_input)
+ result = interpolation_search(collection, target)
+ if result is not None:
+ print('{} found at positions: {}'.format(target, result))
+ else:
+ print('Not found')
\ No newline at end of file
diff --git a/searches/linear_search.py b/searches/linear_search.py
index 24479e45b..ce8098b1a 100644
--- a/searches/linear_search.py
+++ b/searches/linear_search.py
@@ -41,7 +41,7 @@ def linear_search(sequence, target):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/searches/quick_select.py b/searches/quick_select.py
new file mode 100644
index 000000000..e5e2ce99c
--- /dev/null
+++ b/searches/quick_select.py
@@ -0,0 +1,47 @@
+import collections
+import sys
+import random
+import time
+import math
+"""
+A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted
+https://en.wikipedia.org/wiki/Quickselect
+"""
+def _partition(data, pivot):
+ """
+ Three way partition the data into smaller, equal and greater lists,
+ in relationship to the pivot
+ :param data: The data to be sorted (a list)
+ :param pivot: The value to partition the data on
+ :return: Three list: smaller, equal and greater
+ """
+ less, equal, greater = [], [], []
+ for element in data:
+ if element.address < pivot.address:
+ less.append(element)
+ elif element.address > pivot.address:
+ greater.append(element)
+ else:
+ equal.append(element)
+ return less, equal, greater
+
+ def quickSelect(list, k):
+ #k = len(list) // 2 when trying to find the median (index that value would be when list is sorted)
+ smaller = []
+ larger = []
+ pivot = random.randint(0, len(list) - 1)
+ pivot = list[pivot]
+ count = 0
+ smaller, equal, larger =_partition(list, pivot)
+ count = len(equal)
+ m = len(smaller)
+
+ #k is the pivot
+ if m <= k < m + count:
+ return pivot
+ # must be in smaller
+ elif m > k:
+ return quickSelect(smaller, k)
+ #must be in larger
+ else:
+ return quickSelect(larger, k - (m + count))
diff --git a/sorts/bogosort.py b/sorts/bogosort.py
index 2512dab51..ce1982c53 100644
--- a/sorts/bogosort.py
+++ b/sorts/bogosort.py
@@ -41,7 +41,7 @@ def bogosort(collection):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/bubble_sort.py b/sorts/bubble_sort.py
index 54d69e5ba..d26adc89c 100644
--- a/sorts/bubble_sort.py
+++ b/sorts/bubble_sort.py
@@ -41,7 +41,7 @@ def bubble_sort(collection):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/cocktail_shaker_sort.py b/sorts/cocktail_shaker_sort.py
index a21224632..c09d64408 100644
--- a/sorts/cocktail_shaker_sort.py
+++ b/sorts/cocktail_shaker_sort.py
@@ -23,7 +23,7 @@ def cocktail_shaker_sort(unsorted):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/counting_sort.py b/sorts/counting_sort.py
new file mode 100644
index 000000000..13e4554ae
--- /dev/null
+++ b/sorts/counting_sort.py
@@ -0,0 +1,72 @@
+"""
+This is pure python implementation of counting sort algorithm
+For doctests run following command:
+python -m doctest -v counting_sort.py
+or
+python3 -m doctest -v counting_sort.py
+For manual testing run:
+python counting_sort.py
+"""
+
+from __future__ import print_function
+
+
+def counting_sort(collection):
+ """Pure implementation of counting sort algorithm in Python
+ :param collection: some mutable ordered collection with heterogeneous
+ comparable items inside
+ :return: the same collection ordered by ascending
+ Examples:
+ >>> counting_sort([0, 5, 3, 2, 2])
+ [0, 2, 2, 3, 5]
+ >>> counting_sort([])
+ []
+ >>> counting_sort([-2, -5, -45])
+ [-45, -5, -2]
+ """
+ # if the collection is empty, returns empty
+ if collection == []:
+ return []
+
+ # get some information about the collection
+ coll_len = len(collection)
+ coll_max = max(collection)
+ coll_min = min(collection)
+
+ # create the counting array
+ counting_arr_length = coll_max + 1 - coll_min
+ counting_arr = [0] * counting_arr_length
+
+ # count how much a number appears in the collection
+ for number in collection:
+ counting_arr[number - coll_min] += 1
+
+ # sum each position with it's predecessors. now, counting_arr[i] tells
+ # us how many elements <= i has in the collection
+ for i in range(1, counting_arr_length):
+ counting_arr[i] = counting_arr[i] + counting_arr[i-1]
+
+ # create the output collection
+ ordered = [0] * coll_len
+
+ # place the elements in the output, respecting the original order (stable
+ # sort) from end to begin, updating counting_arr
+ for i in reversed(range(0, coll_len)):
+ ordered[counting_arr[collection[i] - coll_min]-1] = collection[i]
+ counting_arr[collection[i] - coll_min] -= 1
+
+ return ordered
+
+
+if __name__ == '__main__':
+ import sys
+ # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # otherwise 2.x's input builtin function is too "smart"
+ if sys.version_info.major < 3:
+ input_function = raw_input
+ else:
+ input_function = input
+
+ user_input = input_function('Enter numbers separated by a comma:\n')
+ unsorted = [int(item) for item in user_input.split(',')]
+ print(counting_sort(unsorted))
diff --git a/sorts/gnome_sort.py b/sorts/gnome_sort.py
index b353e31aa..4f04ff384 100644
--- a/sorts/gnome_sort.py
+++ b/sorts/gnome_sort.py
@@ -21,7 +21,7 @@ def gnome_sort(unsorted):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/insertion_sort.py b/sorts/insertion_sort.py
index caaa9305c..33bd27c8f 100644
--- a/sorts/insertion_sort.py
+++ b/sorts/insertion_sort.py
@@ -41,7 +41,7 @@ def insertion_sort(collection):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/merge_sort.py b/sorts/merge_sort.py
index 92a678016..ca8dbc33c 100644
--- a/sorts/merge_sort.py
+++ b/sorts/merge_sort.py
@@ -64,7 +64,7 @@ def merge_sort(collection):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/quick_sort.py b/sorts/quick_sort.py
index 8974e1bd8..52e37b587 100644
--- a/sorts/quick_sort.py
+++ b/sorts/quick_sort.py
@@ -42,7 +42,7 @@ def quick_sort(ARRAY):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/radix_sort.py b/sorts/radix_sort.py
index 82f8a38b4..f19bc10e8 100644
--- a/sorts/radix_sort.py
+++ b/sorts/radix_sort.py
@@ -2,19 +2,19 @@ def radixsort(lst):
RADIX = 10
maxLength = False
tmp , placement = -1, 1
-
+
while not maxLength:
maxLength = True
# declare and initialize buckets
buckets = [list() for _ in range( RADIX )]
-
+
# split lst between lists
for i in lst:
- tmp = i / placement
+ tmp = i // placement
buckets[tmp % RADIX].append( i )
if maxLength and tmp > 0:
maxLength = False
-
+
# empty lists into lst array
a = 0
for b in range( RADIX ):
@@ -22,6 +22,6 @@ def radixsort(lst):
for i in buck:
lst[a] = i
a += 1
-
+
# move to next
placement *= RADIX
diff --git a/sorts/selection_sort.py b/sorts/selection_sort.py
index 14bc80463..752496e98 100644
--- a/sorts/selection_sort.py
+++ b/sorts/selection_sort.py
@@ -44,7 +44,7 @@ def selection_sort(collection):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/shell_sort.py b/sorts/shell_sort.py
index fdb98a570..de3d84f72 100644
--- a/sorts/shell_sort.py
+++ b/sorts/shell_sort.py
@@ -45,7 +45,7 @@ def shell_sort(collection):
if __name__ == '__main__':
import sys
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
diff --git a/sorts/timsort.py b/sorts/timsort.py
new file mode 100644
index 000000000..8c75b5191
--- /dev/null
+++ b/sorts/timsort.py
@@ -0,0 +1,81 @@
+def binary_search(lst, item, start, end):
+ if start == end:
+ if lst[start] > item:
+ return start
+ else:
+ return start + 1
+ if start > end:
+ return start
+
+ mid = (start + end) // 2
+ if lst[mid] < item:
+ return binary_search(lst, item, mid + 1, end)
+ elif lst[mid] > item:
+ return binary_search(lst, item, start, mid - 1)
+ else:
+ return mid
+
+
+def insertion_sort(lst):
+ length = len(lst)
+
+ for index in range(1, length):
+ value = lst[index]
+ pos = binary_search(lst, value, 0, index - 1)
+ lst = lst[:pos] + [value] + lst[pos:index] + lst[index+1:]
+
+ return lst
+
+
+def merge(left, right):
+ if not left:
+ return right
+
+ if not right:
+ return left
+
+ if left[0] < right[0]:
+ return [left[0]] + merge(left[1:], right)
+
+ return [right[0]] + merge(left, right[1:])
+
+
+def timsort(lst):
+ runs, sorted_runs = [], []
+ length = len(lst)
+ new_run = [lst[0]]
+ sorted_array = []
+
+ for i in range(1, length):
+ if i == length - 1:
+ new_run.append(lst[i])
+ runs.append(new_run)
+ break
+
+ if lst[i] < lst[i - 1]:
+ if not new_run:
+ runs.append([lst[i - 1]])
+ new_run.append(lst[i])
+ else:
+ runs.append(new_run)
+ new_run = []
+ else:
+ new_run.append(lst[i])
+
+ for run in runs:
+ sorted_runs.append(insertion_sort(run))
+
+ for run in sorted_runs:
+ sorted_array = merge(sorted_array, run)
+
+ return sorted_array
+
+
+def main():
+
+ lst = [5,9,10,3,-4,5,178,92,46,-18,0,7]
+ sorted_lst = timsort(lst)
+ print(sorted_lst)
+
+if __name__ == '__main__':
+ main()
diff --git a/traverals/binary_tree_traversals.py b/traversals/binary_tree_traversals.py
similarity index 97%
rename from traverals/binary_tree_traversals.py
rename to traversals/binary_tree_traversals.py
index 9cf118899..9d14a1e7e 100644
--- a/traverals/binary_tree_traversals.py
+++ b/traversals/binary_tree_traversals.py
@@ -84,7 +84,7 @@ if __name__ == '__main__':
import sys
print("\n********* Binary Tree Traversals ************\n")
- # For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
+ # For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input