mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
requirements.txt: Unpin numpy (#2287)
* requirements.txt: Unpin numpy * fixup! Format Python code with psf/black push * Less clutter * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
f0d7879a11
commit
1fb1fdd130
|
@ -5,20 +5,19 @@ An implementation of Karger's Algorithm for partitioning a graph.
|
|||
import random
|
||||
from typing import Dict, List, Set, Tuple
|
||||
|
||||
|
||||
# Adjacency list representation of this graph:
|
||||
# https://en.wikipedia.org/wiki/File:Single_run_of_Karger%E2%80%99s_Mincut_algorithm.svg
|
||||
TEST_GRAPH = {
|
||||
'1': ['2', '3', '4', '5'],
|
||||
'2': ['1', '3', '4', '5'],
|
||||
'3': ['1', '2', '4', '5', '10'],
|
||||
'4': ['1', '2', '3', '5', '6'],
|
||||
'5': ['1', '2', '3', '4', '7'],
|
||||
'6': ['7', '8', '9', '10', '4'],
|
||||
'7': ['6', '8', '9', '10', '5'],
|
||||
'8': ['6', '7', '9', '10'],
|
||||
'9': ['6', '7', '8', '10'],
|
||||
'10': ['6', '7', '8', '9', '3']
|
||||
"1": ["2", "3", "4", "5"],
|
||||
"2": ["1", "3", "4", "5"],
|
||||
"3": ["1", "2", "4", "5", "10"],
|
||||
"4": ["1", "2", "3", "5", "6"],
|
||||
"5": ["1", "2", "3", "4", "7"],
|
||||
"6": ["7", "8", "9", "10", "4"],
|
||||
"7": ["6", "8", "9", "10", "5"],
|
||||
"8": ["6", "7", "9", "10"],
|
||||
"9": ["6", "7", "8", "10"],
|
||||
"10": ["6", "7", "8", "9", "3"],
|
||||
}
|
||||
|
||||
|
||||
|
@ -61,8 +60,9 @@ def partition_graph(graph: Dict[str, List[str]]) -> Set[Tuple[str, str]]:
|
|||
for neighbor in uv_neighbors:
|
||||
graph_copy[neighbor].append(uv)
|
||||
|
||||
contracted_nodes[uv] = {contracted_node for contracted_node in
|
||||
contracted_nodes[u].union(contracted_nodes[v])}
|
||||
contracted_nodes[uv] = {
|
||||
node for node in contracted_nodes[u].union(contracted_nodes[v])
|
||||
}
|
||||
|
||||
# Remove nodes u and v.
|
||||
del graph_copy[u]
|
||||
|
@ -75,8 +75,12 @@ def partition_graph(graph: Dict[str, List[str]]) -> Set[Tuple[str, str]]:
|
|||
|
||||
# Find cutset.
|
||||
groups = [contracted_nodes[node] for node in graph_copy]
|
||||
return {(node, neighbor) for node in groups[0]
|
||||
for neighbor in graph[node] if neighbor in groups[1]}
|
||||
return {
|
||||
(node, neighbor)
|
||||
for node in groups[0]
|
||||
for neighbor in graph[node]
|
||||
if neighbor in groups[1]
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
'''
|
||||
"""
|
||||
developed by: markmelnic
|
||||
original repo: https://github.com/markmelnic/Scoring-Algorithm
|
||||
|
||||
|
@ -23,17 +23,17 @@ Thus the weights for each column are as follows:
|
|||
|
||||
>>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1])
|
||||
[[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]]
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def procentual_proximity(source_data: list, weights: list) -> list:
|
||||
|
||||
'''
|
||||
"""
|
||||
weights - int list
|
||||
possible values - 0 / 1
|
||||
0 if lower values have higher weight in the data set
|
||||
1 if higher values have higher weight in the data set
|
||||
'''
|
||||
"""
|
||||
|
||||
# getting data
|
||||
data_lists = []
|
||||
|
|
|
@ -5,7 +5,7 @@ flake8
|
|||
keras
|
||||
matplotlib
|
||||
mypy
|
||||
numpy>=1.17.4
|
||||
numpy
|
||||
opencv-python
|
||||
pandas
|
||||
pillow
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
'''
|
||||
"""
|
||||
Provide the current worldwide COVID-19 statistics.
|
||||
This data is being scrapped from 'https://www.worldometers.info/coronavirus/'.
|
||||
'''
|
||||
"""
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
|
@ -13,8 +13,8 @@ def world_covid19_stats(url: str = "https://www.worldometers.info/coronavirus")
|
|||
"""
|
||||
Return a dict of current worldwide COVID-19 statistics
|
||||
"""
|
||||
soup = BeautifulSoup(requests.get(url).text, 'html.parser')
|
||||
keys = soup.findAll('h1')
|
||||
soup = BeautifulSoup(requests.get(url).text, "html.parser")
|
||||
keys = soup.findAll("h1")
|
||||
values = soup.findAll("div", {"class": "maincounter-number"})
|
||||
keys += soup.findAll("span", {"class": "panel-title"})
|
||||
values += soup.findAll("div", {"class": "number-table-main"})
|
||||
|
|
Loading…
Reference in New Issue
Block a user