mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Palindromic (#9288)
* added longest palindromic subsequence * removed * added longest palindromic subsequence * added longest palindromic subsequence link * added comments
This commit is contained in:
parent
2fd43c0f7f
commit
1fda96b704
44
dynamic_programming/longest_palindromic_subsequence.py
Normal file
44
dynamic_programming/longest_palindromic_subsequence.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
"""
|
||||
author: Sanket Kittad
|
||||
Given a string s, find the longest palindromic subsequence's length in s.
|
||||
Input: s = "bbbab"
|
||||
Output: 4
|
||||
Explanation: One possible longest palindromic subsequence is "bbbb".
|
||||
Leetcode link: https://leetcode.com/problems/longest-palindromic-subsequence/description/
|
||||
"""
|
||||
|
||||
|
||||
def longest_palindromic_subsequence(input_string: str) -> int:
|
||||
"""
|
||||
This function returns the longest palindromic subsequence in a string
|
||||
>>> longest_palindromic_subsequence("bbbab")
|
||||
4
|
||||
>>> longest_palindromic_subsequence("bbabcbcab")
|
||||
7
|
||||
"""
|
||||
n = len(input_string)
|
||||
rev = input_string[::-1]
|
||||
m = len(rev)
|
||||
dp = [[-1] * (m + 1) for i in range(n + 1)]
|
||||
for i in range(n + 1):
|
||||
dp[i][0] = 0
|
||||
for i in range(m + 1):
|
||||
dp[0][i] = 0
|
||||
|
||||
# create and initialise dp array
|
||||
for i in range(1, n + 1):
|
||||
for j in range(1, m + 1):
|
||||
# If characters at i and j are the same
|
||||
# include them in the palindromic subsequence
|
||||
if input_string[i - 1] == rev[j - 1]:
|
||||
dp[i][j] = 1 + dp[i - 1][j - 1]
|
||||
else:
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
|
||||
|
||||
return dp[n][m]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user