mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Dual Number Automatic Differentiation (#8760)
* Added dual_number_automatic_differentiation.py * updating DIRECTORY.md * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update maths/dual_number_automatic_differentiation.py --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
df88771905
commit
200429fc47
|
@ -549,6 +549,7 @@
|
|||
* [Dodecahedron](maths/dodecahedron.py)
|
||||
* [Double Factorial Iterative](maths/double_factorial_iterative.py)
|
||||
* [Double Factorial Recursive](maths/double_factorial_recursive.py)
|
||||
* [Dual Number Automatic Differentiation](maths/dual_number_automatic_differentiation.py)
|
||||
* [Entropy](maths/entropy.py)
|
||||
* [Euclidean Distance](maths/euclidean_distance.py)
|
||||
* [Euclidean Gcd](maths/euclidean_gcd.py)
|
||||
|
|
141
maths/dual_number_automatic_differentiation.py
Normal file
141
maths/dual_number_automatic_differentiation.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
from math import factorial
|
||||
|
||||
"""
|
||||
https://en.wikipedia.org/wiki/Automatic_differentiation#Automatic_differentiation_using_dual_numbers
|
||||
https://blog.jliszka.org/2013/10/24/exact-numeric-nth-derivatives.html
|
||||
|
||||
Note this only works for basic functions, f(x) where the power of x is positive.
|
||||
"""
|
||||
|
||||
|
||||
class Dual:
|
||||
def __init__(self, real, rank):
|
||||
self.real = real
|
||||
if isinstance(rank, int):
|
||||
self.duals = [1] * rank
|
||||
else:
|
||||
self.duals = rank
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.real}+"
|
||||
f"{'+'.join(str(dual)+'E'+str(n+1)for n,dual in enumerate(self.duals))}"
|
||||
)
|
||||
|
||||
def reduce(self):
|
||||
cur = self.duals.copy()
|
||||
while cur[-1] == 0:
|
||||
cur.pop(-1)
|
||||
return Dual(self.real, cur)
|
||||
|
||||
def __add__(self, other):
|
||||
if not isinstance(other, Dual):
|
||||
return Dual(self.real + other, self.duals)
|
||||
s_dual = self.duals.copy()
|
||||
o_dual = other.duals.copy()
|
||||
if len(s_dual) > len(o_dual):
|
||||
o_dual.extend([1] * (len(s_dual) - len(o_dual)))
|
||||
elif len(s_dual) < len(o_dual):
|
||||
s_dual.extend([1] * (len(o_dual) - len(s_dual)))
|
||||
new_duals = []
|
||||
for i in range(len(s_dual)):
|
||||
new_duals.append(s_dual[i] + o_dual[i])
|
||||
return Dual(self.real + other.real, new_duals)
|
||||
|
||||
__radd__ = __add__
|
||||
|
||||
def __sub__(self, other):
|
||||
return self + other * -1
|
||||
|
||||
def __mul__(self, other):
|
||||
if not isinstance(other, Dual):
|
||||
new_duals = []
|
||||
for i in self.duals:
|
||||
new_duals.append(i * other)
|
||||
return Dual(self.real * other, new_duals)
|
||||
new_duals = [0] * (len(self.duals) + len(other.duals) + 1)
|
||||
for i, item in enumerate(self.duals):
|
||||
for j, jtem in enumerate(other.duals):
|
||||
new_duals[i + j + 1] += item * jtem
|
||||
for k in range(len(self.duals)):
|
||||
new_duals[k] += self.duals[k] * other.real
|
||||
for index in range(len(other.duals)):
|
||||
new_duals[index] += other.duals[index] * self.real
|
||||
return Dual(self.real * other.real, new_duals)
|
||||
|
||||
__rmul__ = __mul__
|
||||
|
||||
def __truediv__(self, other):
|
||||
if not isinstance(other, Dual):
|
||||
new_duals = []
|
||||
for i in self.duals:
|
||||
new_duals.append(i / other)
|
||||
return Dual(self.real / other, new_duals)
|
||||
raise ValueError()
|
||||
|
||||
def __floordiv__(self, other):
|
||||
if not isinstance(other, Dual):
|
||||
new_duals = []
|
||||
for i in self.duals:
|
||||
new_duals.append(i // other)
|
||||
return Dual(self.real // other, new_duals)
|
||||
raise ValueError()
|
||||
|
||||
def __pow__(self, n):
|
||||
if n < 0 or isinstance(n, float):
|
||||
raise ValueError("power must be a positive integer")
|
||||
if n == 0:
|
||||
return 1
|
||||
if n == 1:
|
||||
return self
|
||||
x = self
|
||||
for _ in range(n - 1):
|
||||
x *= self
|
||||
return x
|
||||
|
||||
|
||||
def differentiate(func, position, order):
|
||||
"""
|
||||
>>> differentiate(lambda x: x**2, 2, 2)
|
||||
2
|
||||
>>> differentiate(lambda x: x**2 * x**4, 9, 2)
|
||||
196830
|
||||
>>> differentiate(lambda y: 0.5 * (y + 3) ** 6, 3.5, 4)
|
||||
7605.0
|
||||
>>> differentiate(lambda y: y ** 2, 4, 3)
|
||||
0
|
||||
>>> differentiate(8, 8, 8)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: differentiate() requires a function as input for func
|
||||
>>> differentiate(lambda x: x **2, "", 1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: differentiate() requires a float as input for position
|
||||
>>> differentiate(lambda x: x**2, 3, "")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: differentiate() requires an int as input for order
|
||||
"""
|
||||
if not callable(func):
|
||||
raise ValueError("differentiate() requires a function as input for func")
|
||||
if not isinstance(position, (float, int)):
|
||||
raise ValueError("differentiate() requires a float as input for position")
|
||||
if not isinstance(order, int):
|
||||
raise ValueError("differentiate() requires an int as input for order")
|
||||
d = Dual(position, 1)
|
||||
result = func(d)
|
||||
if order == 0:
|
||||
return result.real
|
||||
return result.duals[order - 1] * factorial(order)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
def f(y):
|
||||
return y**2 * y**4
|
||||
|
||||
print(differentiate(f, 9, 2))
|
Loading…
Reference in New Issue
Block a user