From 2197bfa029641c1695f8172ecf95f25dad9ddd0d Mon Sep 17 00:00:00 2001 From: archit kaushal <38643326+archu5@users.noreply.github.com> Date: Fri, 18 Oct 2019 11:50:22 +0530 Subject: [PATCH] #840 adds polymonial regression program in python (#1235) * #840 adds polymonial regression program in python * Update polymonial_regression.py * Update polymonial_regression.py --- machine_learning/polymonial_regression.py | 37 +++++++++++++++++++++++ 1 file changed, 37 insertions(+) create mode 100644 machine_learning/polymonial_regression.py diff --git a/machine_learning/polymonial_regression.py b/machine_learning/polymonial_regression.py new file mode 100644 index 000000000..03f5f0a97 --- /dev/null +++ b/machine_learning/polymonial_regression.py @@ -0,0 +1,37 @@ +import matplotlib.pyplot as plt +import pandas as pd + +# Importing the dataset +dataset = pd.read_csv('https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/position_salaries.csv') +X = dataset.iloc[:, 1:2].values +y = dataset.iloc[:, 2].values + + +# Splitting the dataset into the Training set and Test set +from sklearn.model_selection import train_test_split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + +# Fitting Polynomial Regression to the dataset +from sklearn.preprocessing import PolynomialFeatures +from sklearn.linear_model import LinearRegression +poly_reg = PolynomialFeatures(degree=4) +X_poly = poly_reg.fit_transform(X) +pol_reg = LinearRegression() +pol_reg.fit(X_poly, y) + + +# Visualizing the Polymonial Regression results +def viz_polymonial(): + plt.scatter(X, y, color='red') + plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') + plt.title('Truth or Bluff (Linear Regression)') + plt.xlabel('Position level') + plt.ylabel('Salary') + plt.show() + return +viz_polymonial() + +# Predicting a new result with Polymonial Regression +pol_reg.predict(poly_reg.fit_transform([[5.5]])) +#output should be 132148.43750003