mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-17 06:48:09 +00:00
Fixes in Bidirectional A* (#2020)
* implement bidirectional astar * add type hints * add wikipedia url * format with black * changes from review * fix collision check * Add testmod() * # doctest: +NORMALIZE_WHITESPACE * Codespell: euclidean * Codespell: coordinates * Codespell: traversal * Codespell: remaining Co-authored-by: John Law <johnlaw.po@gmail.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
dc596d23a9
commit
21ed8968c0
|
@ -3,8 +3,12 @@ https://en.wikipedia.org/wiki/Bidirectional_search
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import time
|
import time
|
||||||
|
from math import sqrt
|
||||||
from typing import List, Tuple
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
# 1 for manhattan, 0 for euclidean
|
||||||
|
HEURISTIC = 0
|
||||||
|
|
||||||
grid = [
|
grid = [
|
||||||
[0, 0, 0, 0, 0, 0, 0],
|
[0, 0, 0, 0, 0, 0, 0],
|
||||||
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
|
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
|
||||||
|
@ -20,12 +24,12 @@ delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
|
||||||
|
|
||||||
class Node:
|
class Node:
|
||||||
"""
|
"""
|
||||||
>>> k = Node(0, 0, 4, 5, 0, None)
|
>>> k = Node(0, 0, 4, 3, 0, None)
|
||||||
>>> k.calculate_heuristic()
|
>>> k.calculate_heuristic()
|
||||||
9
|
5.0
|
||||||
>>> n = Node(1, 4, 3, 4, 2, None)
|
>>> n = Node(1, 4, 3, 4, 2, None)
|
||||||
>>> n.calculate_heuristic()
|
>>> n.calculate_heuristic()
|
||||||
2
|
2.0
|
||||||
>>> l = [k, n]
|
>>> l = [k, n]
|
||||||
>>> n == l[0]
|
>>> n == l[0]
|
||||||
False
|
False
|
||||||
|
@ -47,18 +51,35 @@ class Node:
|
||||||
|
|
||||||
def calculate_heuristic(self) -> float:
|
def calculate_heuristic(self) -> float:
|
||||||
"""
|
"""
|
||||||
The heuristic here is the Manhattan Distance
|
Heuristic for the A*
|
||||||
Could elaborate to offer more than one choice
|
|
||||||
"""
|
"""
|
||||||
dy = abs(self.pos_x - self.goal_x)
|
dy = self.pos_x - self.goal_x
|
||||||
dx = abs(self.pos_y - self.goal_y)
|
dx = self.pos_y - self.goal_y
|
||||||
return dx + dy
|
if HEURISTIC == 1:
|
||||||
|
return abs(dx) + abs(dy)
|
||||||
|
else:
|
||||||
|
return sqrt(dy ** 2 + dx ** 2)
|
||||||
|
|
||||||
def __lt__(self, other):
|
def __lt__(self, other) -> bool:
|
||||||
return self.f_cost < other.f_cost
|
return self.f_cost < other.f_cost
|
||||||
|
|
||||||
|
|
||||||
class AStar:
|
class AStar:
|
||||||
|
"""
|
||||||
|
>>> astar = AStar((0, 0), (len(grid) - 1, len(grid[0]) - 1))
|
||||||
|
>>> (astar.start.pos_y + delta[3][0], astar.start.pos_x + delta[3][1])
|
||||||
|
(0, 1)
|
||||||
|
>>> [x.pos for x in astar.get_successors(astar.start)]
|
||||||
|
[(1, 0), (0, 1)]
|
||||||
|
>>> (astar.start.pos_y + delta[2][0], astar.start.pos_x + delta[2][1])
|
||||||
|
(1, 0)
|
||||||
|
>>> astar.retrace_path(astar.start)
|
||||||
|
[(0, 0)]
|
||||||
|
>>> astar.search() # doctest: +NORMALIZE_WHITESPACE
|
||||||
|
[(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (2, 3), (3, 3),
|
||||||
|
(4, 3), (4, 4), (5, 4), (5, 5), (6, 5), (6, 6)]
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, start, goal):
|
def __init__(self, start, goal):
|
||||||
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
|
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
|
||||||
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
|
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
|
||||||
|
@ -68,10 +89,7 @@ class AStar:
|
||||||
|
|
||||||
self.reached = False
|
self.reached = False
|
||||||
|
|
||||||
self.path = [(self.start.pos_y, self.start.pos_x)]
|
def search(self) -> List[Tuple[int]]:
|
||||||
self.costs = [0]
|
|
||||||
|
|
||||||
def search(self):
|
|
||||||
while self.open_nodes:
|
while self.open_nodes:
|
||||||
# Open Nodes are sorted using __lt__
|
# Open Nodes are sorted using __lt__
|
||||||
self.open_nodes.sort()
|
self.open_nodes.sort()
|
||||||
|
@ -79,8 +97,7 @@ class AStar:
|
||||||
|
|
||||||
if current_node.pos == self.target.pos:
|
if current_node.pos == self.target.pos:
|
||||||
self.reached = True
|
self.reached = True
|
||||||
self.path = self.retrace_path(current_node)
|
return self.retrace_path(current_node)
|
||||||
break
|
|
||||||
|
|
||||||
self.closed_nodes.append(current_node)
|
self.closed_nodes.append(current_node)
|
||||||
successors = self.get_successors(current_node)
|
successors = self.get_successors(current_node)
|
||||||
|
@ -101,7 +118,7 @@ class AStar:
|
||||||
self.open_nodes.append(better_node)
|
self.open_nodes.append(better_node)
|
||||||
|
|
||||||
if not (self.reached):
|
if not (self.reached):
|
||||||
print("No path found")
|
return [(self.start.pos)]
|
||||||
|
|
||||||
def get_successors(self, parent: Node) -> List[Node]:
|
def get_successors(self, parent: Node) -> List[Node]:
|
||||||
"""
|
"""
|
||||||
|
@ -111,21 +128,22 @@ class AStar:
|
||||||
for action in delta:
|
for action in delta:
|
||||||
pos_x = parent.pos_x + action[1]
|
pos_x = parent.pos_x + action[1]
|
||||||
pos_y = parent.pos_y + action[0]
|
pos_y = parent.pos_y + action[0]
|
||||||
if not (0 < pos_x < len(grid[0]) - 1 and 0 < pos_y < len(grid) - 1):
|
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if grid[pos_y][pos_x] != 0:
|
if grid[pos_y][pos_x] != 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
node_ = Node(
|
successors.append(
|
||||||
pos_x,
|
Node(
|
||||||
pos_y,
|
pos_x,
|
||||||
self.target.pos_y,
|
pos_y,
|
||||||
self.target.pos_x,
|
self.target.pos_y,
|
||||||
parent.g_cost + 1,
|
self.target.pos_x,
|
||||||
parent,
|
parent.g_cost + 1,
|
||||||
|
parent,
|
||||||
|
)
|
||||||
)
|
)
|
||||||
successors.append(node_)
|
|
||||||
return successors
|
return successors
|
||||||
|
|
||||||
def retrace_path(self, node: Node) -> List[Tuple[int]]:
|
def retrace_path(self, node: Node) -> List[Tuple[int]]:
|
||||||
|
@ -142,13 +160,24 @@ class AStar:
|
||||||
|
|
||||||
|
|
||||||
class BidirectionalAStar:
|
class BidirectionalAStar:
|
||||||
|
"""
|
||||||
|
>>> bd_astar = BidirectionalAStar((0, 0), (len(grid) - 1, len(grid[0]) - 1))
|
||||||
|
>>> bd_astar.fwd_astar.start.pos == bd_astar.bwd_astar.target.pos
|
||||||
|
True
|
||||||
|
>>> bd_astar.retrace_bidirectional_path(bd_astar.fwd_astar.start,
|
||||||
|
... bd_astar.bwd_astar.start)
|
||||||
|
[(0, 0)]
|
||||||
|
>>> bd_astar.search() # doctest: +NORMALIZE_WHITESPACE
|
||||||
|
[(0, 0), (0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (2, 4),
|
||||||
|
(2, 5), (3, 5), (4, 5), (5, 5), (5, 6), (6, 6)]
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(self, start, goal):
|
def __init__(self, start, goal):
|
||||||
self.fwd_astar = AStar(start, goal)
|
self.fwd_astar = AStar(start, goal)
|
||||||
self.bwd_astar = AStar(goal, start)
|
self.bwd_astar = AStar(goal, start)
|
||||||
self.reached = False
|
self.reached = False
|
||||||
self.path = self.fwd_astar.path
|
|
||||||
|
|
||||||
def search(self):
|
def search(self) -> List[Tuple[int]]:
|
||||||
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
|
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
|
||||||
self.fwd_astar.open_nodes.sort()
|
self.fwd_astar.open_nodes.sort()
|
||||||
self.bwd_astar.open_nodes.sort()
|
self.bwd_astar.open_nodes.sort()
|
||||||
|
@ -157,8 +186,9 @@ class BidirectionalAStar:
|
||||||
|
|
||||||
if current_bwd_node.pos == current_fwd_node.pos:
|
if current_bwd_node.pos == current_fwd_node.pos:
|
||||||
self.reached = True
|
self.reached = True
|
||||||
self.retrace_bidirectional_path(current_fwd_node, current_bwd_node)
|
return self.retrace_bidirectional_path(
|
||||||
break
|
current_fwd_node, current_bwd_node
|
||||||
|
)
|
||||||
|
|
||||||
self.fwd_astar.closed_nodes.append(current_fwd_node)
|
self.fwd_astar.closed_nodes.append(current_fwd_node)
|
||||||
self.bwd_astar.closed_nodes.append(current_bwd_node)
|
self.bwd_astar.closed_nodes.append(current_bwd_node)
|
||||||
|
@ -189,30 +219,38 @@ class BidirectionalAStar:
|
||||||
else:
|
else:
|
||||||
astar.open_nodes.append(better_node)
|
astar.open_nodes.append(better_node)
|
||||||
|
|
||||||
|
if not self.reached:
|
||||||
|
return [self.fwd_astar.start.pos]
|
||||||
|
|
||||||
def retrace_bidirectional_path(
|
def retrace_bidirectional_path(
|
||||||
self, fwd_node: Node, bwd_node: Node
|
self, fwd_node: Node, bwd_node: Node
|
||||||
) -> List[Tuple[int]]:
|
) -> List[Tuple[int]]:
|
||||||
fwd_path = self.fwd_astar.retrace_path(fwd_node)
|
fwd_path = self.fwd_astar.retrace_path(fwd_node)
|
||||||
bwd_path = self.bwd_astar.retrace_path(bwd_node)
|
bwd_path = self.bwd_astar.retrace_path(bwd_node)
|
||||||
fwd_path.reverse()
|
bwd_path.pop()
|
||||||
|
bwd_path.reverse()
|
||||||
path = fwd_path + bwd_path
|
path = fwd_path + bwd_path
|
||||||
return path
|
return path
|
||||||
|
|
||||||
|
|
||||||
# all coordinates are given in format [y,x]
|
if __name__ == "__main__":
|
||||||
init = (0, 0)
|
# all coordinates are given in format [y,x]
|
||||||
goal = (len(grid) - 1, len(grid[0]) - 1)
|
import doctest
|
||||||
for elem in grid:
|
|
||||||
print(elem)
|
|
||||||
|
|
||||||
start_time = time.time()
|
doctest.testmod()
|
||||||
a_star = AStar(init, goal)
|
init = (0, 0)
|
||||||
a_star.search()
|
goal = (len(grid) - 1, len(grid[0]) - 1)
|
||||||
end_time = time.time() - start_time
|
for elem in grid:
|
||||||
print(f"AStar execution time = {end_time:f} seconds")
|
print(elem)
|
||||||
|
|
||||||
bd_start_time = time.time()
|
start_time = time.time()
|
||||||
bidir_astar = BidirectionalAStar(init, goal)
|
a_star = AStar(init, goal)
|
||||||
bidir_astar.search()
|
path = a_star.search()
|
||||||
bd_end_time = time.time() - bd_start_time
|
end_time = time.time() - start_time
|
||||||
print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
|
print(f"AStar execution time = {end_time:f} seconds")
|
||||||
|
|
||||||
|
bd_start_time = time.time()
|
||||||
|
bidir_astar = BidirectionalAStar(init, goal)
|
||||||
|
path = bidir_astar.search()
|
||||||
|
bd_end_time = time.time() - bd_start_time
|
||||||
|
print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
|
||||||
|
|
|
@ -17,7 +17,7 @@ class Cell(object):
|
||||||
"""
|
"""
|
||||||
Class cell represents a cell in the world which have the property
|
Class cell represents a cell in the world which have the property
|
||||||
position : The position of the represented by tupleof x and y
|
position : The position of the represented by tupleof x and y
|
||||||
co-ordinates initially set to (0,0)
|
coordinates initially set to (0,0)
|
||||||
parent : This contains the parent cell object which we visited
|
parent : This contains the parent cell object which we visited
|
||||||
before arrinving this cell
|
before arrinving this cell
|
||||||
g,h,f : The parameters for constructing the heuristic function
|
g,h,f : The parameters for constructing the heuristic function
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
"""
|
"""
|
||||||
Shortest job remainig first
|
Shortest job remaining first
|
||||||
Please note arrival time and burst
|
Please note arrival time and burst
|
||||||
Please use spaces to separate times entered.
|
Please use spaces to separate times entered.
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -29,7 +29,7 @@ class node:
|
||||||
|
|
||||||
|
|
||||||
def inorder(root, res):
|
def inorder(root, res):
|
||||||
# Recursive travesal
|
# Recursive traversal
|
||||||
if root:
|
if root:
|
||||||
inorder(root.left, res)
|
inorder(root.left, res)
|
||||||
res.append(root.val)
|
res.append(root.val)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user