diff --git a/machine_learning/ridge_regression.py b/machine_learning/ridge_regression.py new file mode 100644 index 000000000..d4d3162e5 --- /dev/null +++ b/machine_learning/ridge_regression.py @@ -0,0 +1,108 @@ +import numpy as np +import pandas as pd + + +class RidgeRegression: + def __init__(self, alpha=0.001, lambda_=0.1, iterations=1000): + """ + Ridge Regression Constructor + :param alpha: Learning rate for gradient descent + :param lambda_: Regularization parameter (L2 regularization) + :param iterations: Number of iterations for gradient descent + """ + self.alpha = alpha + self.lambda_ = lambda_ + self.iterations = iterations + self.theta = None + + def feature_scaling(self, X): + """ + Normalize features to have mean 0 and standard deviation 1 + :param X: Input features, shape (m, n) + :return: Scaled features, mean, and std for each feature + """ + mean = np.mean(X, axis=0) + std = np.std(X, axis=0) + + # Avoid division by zero for constant features (std = 0) + std[std == 0] = 1 # Set std=1 for constant features to avoid NaN + + X_scaled = (X - mean) / std + return X_scaled, mean, std + + def fit(self, X, y): + """ + Fit the Ridge Regression model to the training data + :param X: Input features, shape (m, n) + :param y: Target values, shape (m,) + """ + X_scaled, mean, std = self.feature_scaling(X) # Normalize features + m, n = X_scaled.shape + self.theta = np.zeros(n) # Initialize weights to zeros + + for i in range(self.iterations): + predictions = X_scaled.dot(self.theta) + error = predictions - y + + # Compute gradient with L2 regularization + gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m + self.theta -= self.alpha * gradient # Update weights + + def predict(self, X): + """ + Predict values using the trained model + :param X: Input features, shape (m, n) + :return: Predicted values, shape (m,) + """ + X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data + return X_scaled.dot(self.theta) + + def compute_cost(self, X, y): + """ + Compute the cost function with regularization + :param X: Input features, shape (m, n) + :param y: Target values, shape (m,) + :return: Computed cost + """ + X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data + m = len(y) + predictions = X_scaled.dot(self.theta) + cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + ( + self.lambda_ / (2 * m) + ) * np.sum(self.theta**2) + return cost + + def mean_absolute_error(self, y_true, y_pred): + """ + Compute Mean Absolute Error (MAE) between true and predicted values + :param y_true: Actual target values, shape (m,) + :param y_pred: Predicted target values, shape (m,) + :return: MAE + """ + return np.mean(np.abs(y_true - y_pred)) + + +# Example usage +if __name__ == "__main__": + # Load dataset + df = pd.read_csv( + "https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv" + ) + X = df[["Rating"]].values # Feature: Rating + y = df["ADR"].values # Target: ADR + y = (y - np.mean(y)) / np.std(y) + + # Add bias term (intercept) to the feature matrix + X = np.c_[np.ones(X.shape[0]), X] # Add intercept term + + # Initialize and train the Ridge Regression model + model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000) + model.fit(X, y) + + # Predictions + predictions = model.predict(X) + + # Results + print("Optimized Weights:", model.theta) + print("Cost:", model.compute_cost(X, y)) + print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))