mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
parent
0febbd397e
commit
25164bb638
|
@ -3,15 +3,16 @@
|
|||
numbers out of 1 ... n. We use backtracking to solve this problem.
|
||||
Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!)))
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
|
||||
def generate_all_combinations(n: int, k: int) -> [[int]]:
|
||||
def generate_all_combinations(n: int, k: int) -> List[List[int]]:
|
||||
"""
|
||||
>>> generate_all_combinations(n=4, k=2)
|
||||
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
|
||||
"""
|
||||
|
||||
result = []
|
||||
result: List[List[int]] = []
|
||||
create_all_state(1, n, k, [], result)
|
||||
return result
|
||||
|
||||
|
@ -20,8 +21,8 @@ def create_all_state(
|
|||
increment: int,
|
||||
total_number: int,
|
||||
level: int,
|
||||
current_list: [int],
|
||||
total_list: [int],
|
||||
current_list: List[int],
|
||||
total_list: List[List[int]],
|
||||
) -> None:
|
||||
if level == 0:
|
||||
total_list.append(current_list[:])
|
||||
|
@ -33,7 +34,7 @@ def create_all_state(
|
|||
current_list.pop()
|
||||
|
||||
|
||||
def print_all_state(total_list: [int]) -> None:
|
||||
def print_all_state(total_list: List[List[int]]) -> None:
|
||||
for i in total_list:
|
||||
print(*i)
|
||||
|
||||
|
|
|
@ -5,14 +5,18 @@
|
|||
Time complexity: O(n! * n),
|
||||
where n denotes the length of the given sequence.
|
||||
"""
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
def generate_all_permutations(sequence: [int]) -> None:
|
||||
def generate_all_permutations(sequence: List[Union[int, str]]) -> None:
|
||||
create_state_space_tree(sequence, [], 0, [0 for i in range(len(sequence))])
|
||||
|
||||
|
||||
def create_state_space_tree(
|
||||
sequence: [int], current_sequence: [int], index: int, index_used: int
|
||||
sequence: List[Union[int, str]],
|
||||
current_sequence: List[Union[int, str]],
|
||||
index: int,
|
||||
index_used: List[int],
|
||||
) -> None:
|
||||
"""
|
||||
Creates a state space tree to iterate through each branch using DFS.
|
||||
|
@ -40,8 +44,8 @@ print("Enter the elements")
|
|||
sequence = list(map(int, input().split()))
|
||||
"""
|
||||
|
||||
sequence = [3, 1, 2, 4]
|
||||
sequence: List[Union[int, str]] = [3, 1, 2, 4]
|
||||
generate_all_permutations(sequence)
|
||||
|
||||
sequence = ["A", "B", "C"]
|
||||
generate_all_permutations(sequence)
|
||||
sequence_2: List[Union[int, str]] = ["A", "B", "C"]
|
||||
generate_all_permutations(sequence_2)
|
||||
|
|
|
@ -7,10 +7,12 @@
|
|||
diagonal lines.
|
||||
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
solution = []
|
||||
|
||||
|
||||
def isSafe(board: [[int]], row: int, column: int) -> bool:
|
||||
def isSafe(board: List[List[int]], row: int, column: int) -> bool:
|
||||
"""
|
||||
This function returns a boolean value True if it is safe to place a queen there
|
||||
considering the current state of the board.
|
||||
|
@ -38,7 +40,7 @@ def isSafe(board: [[int]], row: int, column: int) -> bool:
|
|||
return True
|
||||
|
||||
|
||||
def solve(board: [[int]], row: int) -> bool:
|
||||
def solve(board: List[List[int]], row: int) -> bool:
|
||||
"""
|
||||
It creates a state space tree and calls the safe function until it receives a
|
||||
False Boolean and terminates that branch and backtracks to the next
|
||||
|
@ -53,7 +55,7 @@ def solve(board: [[int]], row: int) -> bool:
|
|||
solution.append(board)
|
||||
printboard(board)
|
||||
print()
|
||||
return
|
||||
return True
|
||||
for i in range(len(board)):
|
||||
"""
|
||||
For every row it iterates through each column to check if it is feasible to
|
||||
|
@ -68,7 +70,7 @@ def solve(board: [[int]], row: int) -> bool:
|
|||
return False
|
||||
|
||||
|
||||
def printboard(board: [[int]]) -> None:
|
||||
def printboard(board: List[List[int]]) -> None:
|
||||
"""
|
||||
Prints the boards that have a successful combination.
|
||||
"""
|
||||
|
|
|
@ -1,4 +1,7 @@
|
|||
def solve_maze(maze: [[int]]) -> bool:
|
||||
from typing import List
|
||||
|
||||
|
||||
def solve_maze(maze: List[List[int]]) -> bool:
|
||||
"""
|
||||
This method solves the "rat in maze" problem.
|
||||
In this problem we have some n by n matrix, a start point and an end point.
|
||||
|
@ -67,7 +70,7 @@ def solve_maze(maze: [[int]]) -> bool:
|
|||
return solved
|
||||
|
||||
|
||||
def run_maze(maze: [[int]], i: int, j: int, solutions: [[int]]) -> bool:
|
||||
def run_maze(maze: List[List[int]], i: int, j: int, solutions: List[List[int]]) -> bool:
|
||||
"""
|
||||
This method is recursive starting from (i, j) and going in one of four directions:
|
||||
up, down, left, right.
|
||||
|
@ -106,6 +109,7 @@ def run_maze(maze: [[int]], i: int, j: int, solutions: [[int]]) -> bool:
|
|||
|
||||
solutions[i][j] = 0
|
||||
return False
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -6,11 +6,12 @@
|
|||
Summation of the chosen numbers must be equal to given number M and one number
|
||||
can be used only once.
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
|
||||
def generate_sum_of_subsets_soln(nums: [int], max_sum: [int]) -> [int]:
|
||||
result = []
|
||||
path = []
|
||||
def generate_sum_of_subsets_soln(nums: List[int], max_sum: int) -> List[List[int]]:
|
||||
result: List[List[int]] = []
|
||||
path: List[int] = []
|
||||
num_index = 0
|
||||
remaining_nums_sum = sum(nums)
|
||||
create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum)
|
||||
|
@ -18,11 +19,11 @@ def generate_sum_of_subsets_soln(nums: [int], max_sum: [int]) -> [int]:
|
|||
|
||||
|
||||
def create_state_space_tree(
|
||||
nums: [int],
|
||||
nums: List[int],
|
||||
max_sum: int,
|
||||
num_index: int,
|
||||
path: [int],
|
||||
result: [int],
|
||||
path: List[int],
|
||||
result: List[List[int]],
|
||||
remaining_nums_sum: int,
|
||||
) -> None:
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue
Block a user