mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Add sol for P104 Project Euler (#5257)
* Hacktoberfest: added sol for P104 Project Euler * bot requests resolved * pre-commit * Update sol.py * Update sol.py * remove trailing zeroes * Update sol.py * Update sol.py * Update sol.py Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
parent
4bd5494992
commit
26f2df7622
0
project_euler/problem_104/__init__.py
Normal file
0
project_euler/problem_104/__init__.py
Normal file
137
project_euler/problem_104/sol.py
Normal file
137
project_euler/problem_104/sol.py
Normal file
|
@ -0,0 +1,137 @@
|
|||
"""
|
||||
Project Euler Problem 104 : https://projecteuler.net/problem=104
|
||||
|
||||
The Fibonacci sequence is defined by the recurrence relation:
|
||||
|
||||
Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1.
|
||||
It turns out that F541, which contains 113 digits, is the first Fibonacci number
|
||||
for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9,
|
||||
but not necessarily in order). And F2749, which contains 575 digits, is the first
|
||||
Fibonacci number for which the first nine digits are 1-9 pandigital.
|
||||
|
||||
Given that Fk is the first Fibonacci number for which the first nine digits AND
|
||||
the last nine digits are 1-9 pandigital, find k.
|
||||
"""
|
||||
|
||||
|
||||
def check(number: int) -> bool:
|
||||
"""
|
||||
Takes a number and checks if it is pandigital both from start and end
|
||||
|
||||
|
||||
>>> check(123456789987654321)
|
||||
True
|
||||
|
||||
>>> check(120000987654321)
|
||||
False
|
||||
|
||||
>>> check(1234567895765677987654321)
|
||||
True
|
||||
|
||||
"""
|
||||
|
||||
check_last = [0] * 11
|
||||
check_front = [0] * 11
|
||||
|
||||
# mark last 9 numbers
|
||||
for x in range(9):
|
||||
check_last[int(number % 10)] = 1
|
||||
number = number // 10
|
||||
# flag
|
||||
f = True
|
||||
|
||||
# check last 9 numbers for pandigitality
|
||||
|
||||
for x in range(9):
|
||||
if not check_last[x + 1]:
|
||||
f = False
|
||||
if not f:
|
||||
return f
|
||||
|
||||
# mark first 9 numbers
|
||||
number = int(str(number)[:9])
|
||||
|
||||
for x in range(9):
|
||||
check_front[int(number % 10)] = 1
|
||||
number = number // 10
|
||||
|
||||
# check first 9 numbers for pandigitality
|
||||
|
||||
for x in range(9):
|
||||
if not check_front[x + 1]:
|
||||
f = False
|
||||
return f
|
||||
|
||||
|
||||
def check1(number: int) -> bool:
|
||||
"""
|
||||
Takes a number and checks if it is pandigital from END
|
||||
|
||||
>>> check1(123456789987654321)
|
||||
True
|
||||
|
||||
>>> check1(120000987654321)
|
||||
True
|
||||
|
||||
>>> check1(12345678957656779870004321)
|
||||
False
|
||||
|
||||
"""
|
||||
|
||||
check_last = [0] * 11
|
||||
|
||||
# mark last 9 numbers
|
||||
for x in range(9):
|
||||
check_last[int(number % 10)] = 1
|
||||
number = number // 10
|
||||
# flag
|
||||
f = True
|
||||
|
||||
# check last 9 numbers for pandigitality
|
||||
|
||||
for x in range(9):
|
||||
if not check_last[x + 1]:
|
||||
f = False
|
||||
return f
|
||||
|
||||
|
||||
def solution() -> int:
|
||||
"""
|
||||
Outputs the answer is the least Fibonacci number pandigital from both sides.
|
||||
>>> solution()
|
||||
329468
|
||||
"""
|
||||
|
||||
a = 1
|
||||
b = 1
|
||||
c = 2
|
||||
# temporary Fibonacci numbers
|
||||
|
||||
a1 = 1
|
||||
b1 = 1
|
||||
c1 = 2
|
||||
# temporary Fibonacci numbers mod 1e9
|
||||
|
||||
# mod m=1e9, done for fast optimisation
|
||||
tocheck = [0] * 1000000
|
||||
m = 1000000000
|
||||
|
||||
for x in range(1000000):
|
||||
c1 = (a1 + b1) % m
|
||||
a1 = b1 % m
|
||||
b1 = c1 % m
|
||||
if check1(b1):
|
||||
tocheck[x + 3] = 1
|
||||
|
||||
for x in range(1000000):
|
||||
c = a + b
|
||||
a = b
|
||||
b = c
|
||||
# perform check only if in tocheck
|
||||
if tocheck[x + 3] and check(b):
|
||||
return x + 3 # first 2 already done
|
||||
return -1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
Reference in New Issue
Block a user