Implemented a multinomial naive bayes classifier for text classification

This commit is contained in:
ricca 2023-10-02 20:48:40 +02:00
parent 35dd529c85
commit 2759947a48

View File

@ -0,0 +1,135 @@
"""
Implementation from scratch of a basic Multinomial Naive Bayes classifier for text classification.
"""
import numpy as np
import doctest
from scipy import sparse
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn.metrics import accuracy_score
def group_data_by_target(targets):
"""
Associates to each target label the indices of the examples with that label
Parameters
----------
targets : array-like of shape (n_samples,)
Target labels
Returns
----------
grouped_data : dict of (label : list)
Maps each target label to the list of indices of the examples with that label
Example
----------
>>> y = np.array([1, 2, 3, 1, 2, 5])
>>> group_data_by_target(y)
{1: [0, 3], 2: [1, 4], 3: [2], 5: [5]}
"""
grouped_data = {}
for i, y in enumerate(targets):
if y not in grouped_data:
grouped_data[y] = []
grouped_data[y].append(i)
return grouped_data
class MultinomialNBClassifier:
def __init__(self, alpha=1):
self.classes = None
self.features_probs = None
self.priors = None
self.alpha = alpha
def fit(self, X, y):
"""
Parameters
----------
X : scipy.sparse.csr_matrix of shape (n_samples, n_features)
Multinomial training examples
y : array-like of shape (n_samples,)
Target labels
"""
if not sparse.issparse(X):
raise ValueError("Matrix X must be an instance of scipy.sparse.csr_matrix")
n_examples, n_features = X.shape
grouped_data = group_data_by_target(y)
self.classes = list(grouped_data.keys())
self.priors = np.zeros(shape=len(self.classes))
self.features_probs = np.zeros(shape=(len(self.classes), n_features))
for i, class_i in enumerate(self.classes):
data_class_i = X[grouped_data[class_i]]
prior_class_i = data_class_i.shape[0] / n_examples
self.priors[i] = prior_class_i
tot_features_count = data_class_i.sum() # count of all features in class_i
features_count = np.array(data_class_i.sum(axis=0))[0] # count of each feature x_j in class_i
for j, n_j in enumerate(features_count):
self.features_probs[i][j] = (self.alpha + n_j) / (tot_features_count + self.alpha * n_features)
def predict(self, X):
"""
Parameters
----------
X : scipy.sparse.csr_matrix of shape (n_samples, n_features)
Multinomial test examples
Returns
----------
y_pred : ndarray of shape (n_samples,)
Predicted target labels of test examples
Example
----------
Let's test the function following an example taken from the documentation of the MultinomialNB model
from sklearn
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> X = sparse.csr_matrix(X)
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> model = MultinomialNBClassifier()
>>> model.fit(X, y)
>>> model.predict(X[2:3])
array([3])
"""
if not sparse.issparse(X):
raise ValueError("Matrix X must be an instance of scipy.sparse.csr_matrix")
y_pred = []
log_features_probs = np.log(self.features_probs)
log_priors = np.log(self.priors)
for instance in X:
theta = instance.multiply(log_features_probs).sum(axis=1)
likelihood = [log_prior_class_i + theta[i] for i, log_prior_class_i in enumerate(log_priors)]
y_pred.append(self.classes[np.argmax(likelihood)])
return np.array(y_pred)
def main():
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
X_train = newsgroups_train['data']
y_train = newsgroups_train['target']
X_test = newsgroups_test['data']
y_test = newsgroups_test['target']
vectorizer = TfidfVectorizer(stop_words='english')
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)
model = MultinomialNBClassifier()
print("Start training")
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Accuracy of Naive Bayes text classifier: " + str(accuracy_score(y_test, y_pred)))
if __name__ == "__main__":
main()
doctest.testmod()