mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
Merge pull request #30 from akshaysharma096/master
Traversal algorithms for Binary Tree.
This commit is contained in:
commit
28a7381933
|
@ -11,6 +11,7 @@ python bogosort.py
|
|||
from __future__ import print_function
|
||||
import random
|
||||
|
||||
|
||||
def bogosort(collection):
|
||||
"""Pure implementation of the bogosort algorithm in Python
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
|
@ -28,13 +29,13 @@ def bogosort(collection):
|
|||
def isSorted(collection):
|
||||
if len(collection) < 2:
|
||||
return True
|
||||
for i in range(len(collection)-1):
|
||||
if collection[i] > collection[i+1]:
|
||||
for i in range(len(collection) - 1):
|
||||
if collection[i] > collection[i + 1]:
|
||||
return False
|
||||
return True
|
||||
|
||||
while not isSorted(collection):
|
||||
random.shuffle(collection)
|
||||
random.shuffle(collection)
|
||||
return collection
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -9,6 +9,7 @@ python3 -m doctest -v bubble_sort.py
|
|||
For manual testing run:
|
||||
python bubble_sort.py
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@ python heap_sort.py
|
|||
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def heapify(unsorted, index, heap_size):
|
||||
largest = index
|
||||
left_index = 2 * index + 1
|
||||
|
@ -26,6 +27,7 @@ def heapify(unsorted, index, heap_size):
|
|||
unsorted[largest], unsorted[index] = unsorted[index], unsorted[largest]
|
||||
heapify(unsorted, largest, heap_size)
|
||||
|
||||
|
||||
def heap_sort(unsorted):
|
||||
'''
|
||||
Pure implementation of the heap sort algorithm in Python
|
||||
|
@ -44,7 +46,7 @@ def heap_sort(unsorted):
|
|||
[-45, -5, -2]
|
||||
'''
|
||||
n = len(unsorted)
|
||||
for i in range(n//2 - 1, -1, -1):
|
||||
for i in range(n // 2 - 1, -1, -1):
|
||||
heapify(unsorted, i, n)
|
||||
for i in range(n - 1, 0, -1):
|
||||
unsorted[0], unsorted[i] = unsorted[i], unsorted[0]
|
||||
|
|
|
@ -30,8 +30,9 @@ def insertion_sort(collection):
|
|||
[-45, -5, -2]
|
||||
"""
|
||||
for index in range(1, len(collection)):
|
||||
while 0 < index and collection[index] < collection[index-1]:
|
||||
collection[index], collection[index-1] = collection[index-1], collection[index]
|
||||
while 0 < index and collection[index] < collection[index - 1]:
|
||||
collection[index], collection[
|
||||
index - 1] = collection[index - 1], collection[index]
|
||||
index -= 1
|
||||
|
||||
return collection
|
||||
|
|
|
@ -35,13 +35,12 @@ def shell_sort(collection):
|
|||
while i < len(collection):
|
||||
temp = collection[i]
|
||||
j = i
|
||||
while j >= gap and collection[j-gap] > temp:
|
||||
while j >= gap and collection[j - gap] > temp:
|
||||
collection[j] = collection[j - gap]
|
||||
j -= gap
|
||||
collection[j] = temp
|
||||
i += 1
|
||||
|
||||
|
||||
return collection
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
105
traverals/binary_tree_traversals.py
Normal file
105
traverals/binary_tree_traversals.py
Normal file
|
@ -0,0 +1,105 @@
|
|||
"""
|
||||
This is pure python implementation of tree traversal algorithms
|
||||
"""
|
||||
|
||||
import queue
|
||||
|
||||
|
||||
class TreeNode:
|
||||
|
||||
def __init__(self, data):
|
||||
self.data = data
|
||||
self.right = None
|
||||
self.left = None
|
||||
|
||||
|
||||
def build_tree():
|
||||
print("Enter the value of the root node: ", end="")
|
||||
data = eval(input())
|
||||
if data < 0:
|
||||
return None
|
||||
else:
|
||||
q = queue.Queue()
|
||||
tree_node = TreeNode(data)
|
||||
q.put(tree_node)
|
||||
while not q.empty():
|
||||
node_found = q.get()
|
||||
print("Enter the left node of %s: " % node_found.data, end="")
|
||||
left_data = eval(input())
|
||||
if left_data >= 0:
|
||||
left_node = TreeNode(left_data)
|
||||
node_found.left = left_node
|
||||
q.put(left_node)
|
||||
print("Enter the right node of %s: " % node_found.data, end="")
|
||||
right_data = eval(input())
|
||||
if right_data >= 0:
|
||||
right_node = TreeNode(right_data)
|
||||
node_found.right = right_node
|
||||
q.put(right_node)
|
||||
return tree_node
|
||||
|
||||
|
||||
def pre_order(node):
|
||||
if not node:
|
||||
return
|
||||
print(node.data, end=" ")
|
||||
pre_order(node.left)
|
||||
pre_order(node.right)
|
||||
|
||||
|
||||
def in_order(node):
|
||||
if not node:
|
||||
return
|
||||
pre_order(node.left)
|
||||
print(node.data, end=" ")
|
||||
pre_order(node.right)
|
||||
|
||||
|
||||
def post_order(node):
|
||||
if not node:
|
||||
return
|
||||
post_order(node.left)
|
||||
post_order(node.right)
|
||||
print(node.data, end=" ")
|
||||
|
||||
|
||||
def level_order(node):
|
||||
if not node:
|
||||
return
|
||||
q = queue.Queue()
|
||||
q.put(node)
|
||||
while not q.empty():
|
||||
node_dequeued = q.get()
|
||||
print(node_dequeued.data, end=" ")
|
||||
if node_dequeued.left:
|
||||
q.put(node_dequeued.left)
|
||||
if node_dequeued.right:
|
||||
q.put(node_dequeued.right)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
print("\n********* Binary Tree Traversals ************\n")
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
node = build_tree()
|
||||
print("\n********* Pre Order Traversal ************")
|
||||
pre_order(node)
|
||||
print("\n******************************************\n")
|
||||
|
||||
print("\n********* In Order Traversal ************")
|
||||
in_order(node)
|
||||
print("\n******************************************\n")
|
||||
|
||||
print("\n********* Post Order Traversal ************")
|
||||
post_order(node)
|
||||
print("\n******************************************\n")
|
||||
|
||||
print("\n********* Level Order Traversal ************")
|
||||
level_order(node)
|
||||
print("\n******************************************\n")
|
Loading…
Reference in New Issue
Block a user