mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
HACKTOBERFEST - Added solution to Euler 64. (#3706)
* Added solution to Euler 64. Added Python solution to Project Euler Problem 64. Added a folder problem_064. Added __init__.py file. Added sol1.py file. * Update sol1.py Made formatting changes as mentioned by pre-commit * Update sol1.py Minor changes to variable naming and function calling as mentioned by @ruppysuppy * Update sol1.py Changes to function call as mentioned by @cclauss
This commit is contained in:
parent
ff00bfa0ab
commit
29d0fbb0e0
0
project_euler/problem_064/__init__.py
Normal file
0
project_euler/problem_064/__init__.py
Normal file
77
project_euler/problem_064/sol1.py
Normal file
77
project_euler/problem_064/sol1.py
Normal file
|
@ -0,0 +1,77 @@
|
|||
"""
|
||||
Project Euler Problem 64: https://projecteuler.net/problem=64
|
||||
|
||||
All square roots are periodic when written as continued fractions.
|
||||
For example, let us consider sqrt(23).
|
||||
It can be seen that the sequence is repeating.
|
||||
For conciseness, we use the notation sqrt(23)=[4;(1,3,1,8)],
|
||||
to indicate that the block (1,3,1,8) repeats indefinitely.
|
||||
Exactly four continued fractions, for N<=13, have an odd period.
|
||||
How many continued fractions for N<=10000 have an odd period?
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Continued_fraction
|
||||
"""
|
||||
|
||||
from math import floor, sqrt
|
||||
|
||||
|
||||
def continuous_fraction_period(n: int) -> int:
|
||||
"""
|
||||
Returns the continued fraction period of a number n.
|
||||
|
||||
>>> continuous_fraction_period(2)
|
||||
1
|
||||
>>> continuous_fraction_period(5)
|
||||
1
|
||||
>>> continuous_fraction_period(7)
|
||||
4
|
||||
>>> continuous_fraction_period(11)
|
||||
2
|
||||
>>> continuous_fraction_period(13)
|
||||
5
|
||||
"""
|
||||
numerator = 0.0
|
||||
denominator = 1.0
|
||||
ROOT = int(sqrt(n))
|
||||
integer_part = ROOT
|
||||
period = 0
|
||||
while integer_part != 2 * ROOT:
|
||||
numerator = denominator * integer_part - numerator
|
||||
denominator = (n - numerator ** 2) / denominator
|
||||
integer_part = int((ROOT + numerator) / denominator)
|
||||
period += 1
|
||||
return period
|
||||
|
||||
|
||||
def solution(n: int = 10000) -> int:
|
||||
"""
|
||||
Returns the count of numbers <= 10000 with odd periods.
|
||||
This function calls continuous_fraction_period for numbers which are
|
||||
not perfect squares.
|
||||
This is checked in if sr - floor(sr) != 0 statement.
|
||||
If an odd period is returned by continuous_fraction_period,
|
||||
count_odd_periods is increased by 1.
|
||||
|
||||
>>> solution(2)
|
||||
1
|
||||
>>> solution(5)
|
||||
2
|
||||
>>> solution(7)
|
||||
2
|
||||
>>> solution(11)
|
||||
3
|
||||
>>> solution(13)
|
||||
4
|
||||
"""
|
||||
count_odd_periods = 0
|
||||
for i in range(2, n + 1):
|
||||
sr = sqrt(i)
|
||||
if sr - floor(sr) != 0:
|
||||
if continuous_fraction_period(i) % 2 == 1:
|
||||
count_odd_periods += 1
|
||||
return count_odd_periods
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution(int(input().strip()))}")
|
Loading…
Reference in New Issue
Block a user