updated function signatures, type hints, and docstrings; modified function implementations and variable names.

This commit is contained in:
Soham-KT 2024-10-06 14:55:35 +05:30
parent cb4e8dd06b
commit 2cdd70bdd0

View File

@ -1,14 +1,16 @@
from collections.abc import Callable
import numpy as np
from sympy import lambdify, symbols, sympify
def get_inputs() -> tuple:
def get_inputs() -> tuple[str, float, float]:
"""
Get user input for the function, lower limit, and upper limit.
Returns:
tuple: A tuple containing the function as a string, the lower limit (a),
and the upper limit (b) as floats.
Tuple[str, float, float]: A tuple containing the function as a string,
the lower limit (a), and the upper limit (b) as floats.
Example:
>>> from unittest.mock import patch
@ -23,7 +25,7 @@ def get_inputs() -> tuple:
return func, lower_limit, upper_limit
def safe_function_eval(func_str: str) -> float:
def safe_function_eval(func_str: str) -> Callable:
"""
Safely evaluates the function by substituting x value using sympy.
@ -31,42 +33,39 @@ def safe_function_eval(func_str: str) -> float:
func_str (str): Function expression as a string.
Returns:
float: The evaluated function result.
Callable: A callable lambda function for numerical evaluation.
Examples:
>>> f = safe_function_eval('x**2')
>>> f(3)
9
>>> f = safe_function_eval('sin(x)')
>>> round(f(3.14), 2)
0.0
>>> f = safe_function_eval('x + x**2')
>>> f(2)
6
"""
x = symbols("x")
func_expr = sympify(func_str)
# Convert the function to a callable lambda function
lambda_func = lambdify(x, func_expr, modules=["numpy"])
return lambda_func
def compute_table(
func: float, lower_limit: float, upper_limit: float, acc: int
) -> tuple:
def compute_table(func: Callable, lower_limit: float,
upper_limit: float, acc: int) -> tuple[np.ndarray, float]:
"""
Compute the table of function values based on the limits and accuracy.
Args:
func (str): The mathematical function with the variable 'x' as a string.
func (Callable): The mathematical function as a callable.
lower_limit (float): The lower limit of the integral.
upper_limit (float): The upper limit of the integral.
acc (int): The number of subdivisions for accuracy.
Returns:
tuple: A tuple containing the table of values and the step size (h).
Tuple[np.ndarray, float]: A tuple containing the table
of values and the step size (h).
Example:
>>> compute_table(
@ -79,21 +78,19 @@ def compute_table(
n_points = acc * 6 + 1
h = (upper_limit - lower_limit) / (n_points - 1)
x_vals = np.linspace(lower_limit, upper_limit, n_points)
# Evaluate function values at all points
table = func(x_vals)
table = func(x_vals) # Evaluate function values at all points
return table, h
def apply_weights(table: list) -> list:
def apply_weights(table: list[float]) -> list[float]:
"""
Apply Simpson's rule weights to the values in the table.
Apply Weddle's rule weights to the values in the table.
Args:
table (list): A list of computed function values.
table (List[float]): A list of computed function values.
Returns:
list: A list of weighted values.
List[float]: A list of weighted values.
Example:
>>> apply_weights([0.0, 0.866, 1.0, 0.866, 0.0, -0.866, -1.0])
@ -103,7 +100,7 @@ def apply_weights(table: list) -> list:
for i in range(1, len(table) - 1):
if i % 2 == 0 and i % 3 != 0:
add.append(table[i])
if i % 2 != 0 and i % 3 != 0:
elif i % 2 != 0 and i % 3 != 0:
add.append(5 * table[i])
elif i % 6 == 0:
add.append(2 * table[i])
@ -112,13 +109,13 @@ def apply_weights(table: list) -> list:
return add
def compute_solution(add: list, table: list, step_size: float) -> float:
def compute_solution(add: list[float], table: list[float], step_size: float) -> float:
"""
Compute the final solution using the weighted values and table.
Args:
add (list): A list of weighted values from apply_weights.
table (list): A list of function values.
add (List[float]): A list of weighted values from apply_weights.
table (List[float]): A list of function values.
step_size (float): The step size calculated from the limits and accuracy.
Returns:
@ -137,15 +134,15 @@ if __name__ == "__main__":
testmod()
func_str, a, b = get_inputs()
acc = 1
solution = None
# func_str, a, b = get_inputs()
# acc = 1
# solution = None
func = safe_function_eval(func_str)
while acc <= 100_000:
table, h = compute_table(func, a, b, acc)
add = apply_weights(table)
solution = compute_solution(add, table, h)
acc *= 10
# func = safe_function_eval(func_str)
# while acc <= 100_000:
# table, h = compute_table(func, a, b, acc)
# add = apply_weights(table)
# solution = compute_solution(add, table, h)
# acc *= 10
print(f"Solution: {solution}")
# print(f"Solution: {solution}")