Add typing hints and naming conventions

This commit is contained in:
ricca 2023-10-03 19:52:45 +02:00
parent e9f3d61643
commit 2de3ac6ec9

View File

@ -13,9 +13,10 @@ from scipy import sparse
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn.metrics import accuracy_score
from numpy.typing import ArrayLike
def group_indices_by_target(targets):
def group_indices_by_target(targets: ArrayLike) -> dict:
"""
Associates to each target label the indices of the examples with that label
@ -50,35 +51,24 @@ class MultinomialNBClassifier:
self.priors = None
self.alpha = alpha
def _check_X(self, X):
if not sparse.issparse(X):
raise ValueError("Matrix X must be an instance of scipy.sparse.csr_matrix")
def _check_X_y(self, X, y):
self._check_X(X)
if X.shape[0] != len(y):
raise ValueError(
"The expected shape for array y is (" + str(X.shape[0]) + ",), but got (" + str(len(y)) + ",)")
def fit(self, X, y):
def fit(self, data: sparse.csr_matrix, y: ArrayLike) -> None:
"""
Parameters
----------
X : scipy.sparse.csr_matrix of shape (n_samples, n_features)
data : scipy.sparse.csr_matrix of shape (n_samples, n_features)
Multinomial training examples
y : array-like of shape (n_samples,)
Target labels
"""
self._check_X_y(X, y)
n_examples, n_features = X.shape
n_examples, n_features = data.shape
grouped_indices = group_indices_by_target(y)
self.classes = list(grouped_indices.keys())
self.priors = np.zeros(shape=len(self.classes))
self.features_probs = np.zeros(shape=(len(self.classes), n_features))
for i, class_i in enumerate(self.classes):
data_class_i = X[grouped_indices[class_i]]
data_class_i = data[grouped_indices[class_i]]
prior_class_i = data_class_i.shape[0] / n_examples
self.priors[i] = prior_class_i
tot_features_count = data_class_i.sum() # count of all features in class_i
@ -86,11 +76,11 @@ class MultinomialNBClassifier:
for j, n_j in enumerate(features_count):
self.features_probs[i][j] = (self.alpha + n_j) / (tot_features_count + self.alpha * n_features)
def predict(self, X):
def predict(self, data: sparse.csr_matrix) -> np.array:
"""
Parameters
----------
X : scipy.sparse.csr_matrix of shape (n_samples, n_features)
data : scipy.sparse.csr_matrix of shape (n_samples, n_features)
Multinomial test examples
Returns
@ -103,41 +93,43 @@ class MultinomialNBClassifier:
Let's test the function following an example taken from the documentation of the MultinomialNB model
from sklearn
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> X = sparse.csr_matrix(X)
>>> data = rng.randint(5, size=(6, 100))
>>> data = sparse.csr_matrix(data)
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> model = MultinomialNBClassifier()
>>> model.fit(X, y)
>>> model.predict(X[2:3])
>>> model.fit(data, y)
>>> model.predict(data[2:3])
array([3])
"""
self._check_X(X)
y_pred = []
log_features_probs = np.log(self.features_probs)
log_priors = np.log(self.priors)
for instance in X:
for instance in data:
theta = instance.multiply(log_features_probs).sum(axis=1)
likelihood = [log_prior_class_i + theta[i] for i, log_prior_class_i in enumerate(log_priors)]
y_pred.append(self.classes[np.argmax(likelihood)])
return np.array(y_pred)
def main():
def main() -> None:
"""
Performs the text classification on the twenty_newsgroup dataset from sklearn
"""
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
X_train = newsgroups_train['data']
x_train = newsgroups_train['data']
y_train = newsgroups_train['target']
X_test = newsgroups_test['data']
x_test = newsgroups_test['data']
y_test = newsgroups_test['target']
vectorizer = TfidfVectorizer(stop_words='english')
X_train = vectorizer.fit_transform(X_train)
X_test = vectorizer.transform(X_test)
x_train = vectorizer.fit_transform(x_train)
x_test = vectorizer.transform(x_test)
model = MultinomialNBClassifier()
print("Start training")
model.fit(X_train, y_train)
model.fit(x_train, y_train)
y_pred = model.predict(X_test)
y_pred = model.predict(x_test)
print("Accuracy of naive bayes text classifier: " + str(accuracy_score(y_test, y_pred)))