mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-25 18:38:39 +00:00
Added file basic_orbital_capture
This commit is contained in:
parent
c9ee6ed188
commit
2e81e22b5a
118
physics/basic_orbital_capture.py
Normal file
118
physics/basic_orbital_capture.py
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
|
"""
|
||||||
|
These two functions will return the radii of capture for a target object
|
||||||
|
of mass M and radius R as well as it's effective cross sectional area σ(sigma).
|
||||||
|
That is to say any projectile with velocity v passing within σ, will be caputered
|
||||||
|
by the target object with mass M. The derivation of which is given at the bottom
|
||||||
|
of this file.
|
||||||
|
|
||||||
|
The derivation shows that a projectile does not need to aim directly at the target
|
||||||
|
body in order to hit it, as R_capture>R_target. Astronomers refer to the effective
|
||||||
|
cross section for caputre as σ=π*R_capture**2.
|
||||||
|
|
||||||
|
This algorithm does not account for an N-body problem.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def capture_radii(
|
||||||
|
target_body_radius: float, target_body_mass: float,
|
||||||
|
projectile_velocity: float
|
||||||
|
)->float:
|
||||||
|
|
||||||
|
#Gravitational constant to four signifigant figures as of 7/8/2023|
|
||||||
|
#Source google: gravitational constant
|
||||||
|
g=6.6743e-11 #SI units (N*m**2)/kg**2
|
||||||
|
|
||||||
|
escape_velocity_squared=(2*g*target_body_mass)/target_body_radius
|
||||||
|
|
||||||
|
capture_radius=target_body_radius*math.sqrt(
|
||||||
|
1+escape_velocity_squared/math.pow(projectile_velocity,2)
|
||||||
|
)
|
||||||
|
return capture_radius
|
||||||
|
|
||||||
|
|
||||||
|
def capture_area(capture_radius: float)->float:
|
||||||
|
sigma=math.pi*math.pow(capture_radius,2)
|
||||||
|
return sigma
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Derivation:
|
||||||
|
|
||||||
|
Let: Mt=target mass, Rt=target radius, v=projectile_velocity,
|
||||||
|
r_0=radius of projectile at instant 0 to CM of target
|
||||||
|
v_p=v at closest approach,
|
||||||
|
r_p=radius from projectile to target CM at closest approach,
|
||||||
|
R_capture= radius of impact for projectile with velocity v
|
||||||
|
|
||||||
|
(1)At time=0 the projectile's energy falling from infinity| E=K+U=0.5*m*(v**2)+0
|
||||||
|
|
||||||
|
E_initial=0.5*m*(v**2)
|
||||||
|
|
||||||
|
(2)at time=0 the angular momentum of the projectile relative to CM target|
|
||||||
|
L_initial=m*r_0*v*sin(Θ)->m*r_0*v*(R_capture/r_0)->m*v*R_capture
|
||||||
|
|
||||||
|
L_i=m*v*R_capture
|
||||||
|
|
||||||
|
(3)The energy of the projectile at closest approach will be its kinetic energy
|
||||||
|
at closest approach plus gravitational potential energy(-(GMm)/R)|
|
||||||
|
E_p=K_p+U_p->E_p=0.5*m*(v_p**2)-(G*Mt*m)/r_p
|
||||||
|
|
||||||
|
E_p=0.0.5*m*(v_p**2)-(G*Mt*m)/r_p
|
||||||
|
|
||||||
|
(4)The angular momentum of the projectile relative to the target at closest
|
||||||
|
approach will be L_p=m*r_p*v_p*sin(Θ), however relative to the target Θ=90°
|
||||||
|
sin(90°)=1|
|
||||||
|
|
||||||
|
L_p=m*r_p*v_p
|
||||||
|
(5)Using conservation of angular momentum and energy, we can write a quadratic
|
||||||
|
equation that solves for r_p|
|
||||||
|
|
||||||
|
(a)
|
||||||
|
Ei=Ep-> 0.5*m*(v**2)=0.5*m*(v_p**2)-(G*Mt*m)/r_p-> v**2=v_p**2-(2*G*Mt)/r_p
|
||||||
|
|
||||||
|
(b)
|
||||||
|
Li=Lp-> m*v*R_capture=m*r_p*v_p-> v*R_capture=r_p*v_p-> v_p=(v*R_capture)/r_p
|
||||||
|
|
||||||
|
(c) b plugs int a|
|
||||||
|
v**2=((v*R_capture)/r_p)**2-(2*G*Mt)/r_p->
|
||||||
|
|
||||||
|
v**2-(v**2)*(R_c**2)/(r_p**2)+(2*G*Mt)/r_p=0->
|
||||||
|
|
||||||
|
(v**2)*(r_p**2)+2*G*Mt*r_p-(v**2)*(R_c**2)=0
|
||||||
|
|
||||||
|
(d) Using the quadratic formula, we'll solve for r_p then rearrange to solve to
|
||||||
|
R_capture
|
||||||
|
|
||||||
|
r_p=(-2*G*Mt ± sqrt(4*G^2*Mt^2+ 4(v^4*R_c^2)))/(2*v^2)->
|
||||||
|
|
||||||
|
r_p=(-G*Mt ± sqrt(G^2*Mt+v^4*R_c^2))/v^2->
|
||||||
|
|
||||||
|
r_p<0 is something we can ignore, as it has no physical meaning for our purposes.->
|
||||||
|
|
||||||
|
r_p=(-G*Mt)/v^2 + sqrt(G^2*Mt^2/v^4 + R_c^2)
|
||||||
|
|
||||||
|
(e)We are trying to solve for R_c. We are looking for capture, so we want r_p=Rt
|
||||||
|
|
||||||
|
Rt + G*Mt/v^2 = sqrt(G^2*Mt^2/v^4 + R_c^2)->
|
||||||
|
|
||||||
|
(Rt + G*Mt/v^2)^2 = G^2*Mt^2/v^4 + R_c^2->
|
||||||
|
|
||||||
|
Rt^2 + 2*G*Mt*Rt/v^2 + G^2*Mt^2/v^4 = G^2*Mt^2/v^4 + R_c^2->
|
||||||
|
|
||||||
|
Rt**2 + 2*G*Mt*Rt/v**2 = R_c**2->
|
||||||
|
|
||||||
|
Rt**2 * (1 + 2*G*Mt/Rt *1/v**2) = R_c**2->
|
||||||
|
|
||||||
|
escape velocity = sqrt(2GM/R)= v_escape**2=2GM/R->
|
||||||
|
|
||||||
|
Rt**2 * (1 + v_esc**2/v**2) = R_c**2->
|
||||||
|
|
||||||
|
(6)
|
||||||
|
R_capture = Rt * sqrt(1 + v_esc**2/v**2)
|
||||||
|
|
||||||
|
Source: Problem Set 3 #8 c.Fall_2017|Honors Astronomy|Professor Rachel Bezanson
|
||||||
|
"""
|
Loading…
x
Reference in New Issue
Block a user