mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
lowest_common_ancestor.py static type checking (#2329)
* adding static type checking to basic_binary_tree.py * Add static type checking to functions with None return type * Applying code review comments * Added missing import statement * fix spaciing * "cleaned up depth_of_tree" * Add doctests and then streamline display() and is_full_binary_tree() * added static typing to lazy_segment_tree.py * added missing import statement * modified variable names for left and right elements * added static typing to lowest_common_ancestor.py * fixed formatting * modified files to meet style guidelines, edited docstrings and added some doctests * added and fixed doctests in lazy_segment_tree.py * fixed errors in doctests Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
d3199da000
commit
2eaacee7b4
|
@ -1,84 +1,119 @@
|
|||
import math
|
||||
from typing import List
|
||||
|
||||
|
||||
class SegmentTree:
|
||||
def __init__(self, N):
|
||||
def __init__(self, N: int) -> None:
|
||||
self.N = N
|
||||
self.st = [
|
||||
0 for i in range(0, 4 * N)
|
||||
] # approximate the overall size of segment tree with array N
|
||||
self.lazy = [0 for i in range(0, 4 * N)] # create array to store lazy update
|
||||
self.flag = [0 for i in range(0, 4 * N)] # flag for lazy update
|
||||
# approximate the overall size of segment tree with array N
|
||||
self.st: List[int] = [0 for i in range(0, 4 * N)]
|
||||
# create array to store lazy update
|
||||
self.lazy: List[int] = [0 for i in range(0, 4 * N)]
|
||||
self.flag: List[int] = [0 for i in range(0, 4 * N)] # flag for lazy update
|
||||
|
||||
def left(self, idx):
|
||||
def left(self, idx: int) -> int:
|
||||
"""
|
||||
>>> segment_tree = SegmentTree(15)
|
||||
>>> segment_tree.left(1)
|
||||
2
|
||||
>>> segment_tree.left(2)
|
||||
4
|
||||
>>> segment_tree.left(12)
|
||||
24
|
||||
"""
|
||||
return idx * 2
|
||||
|
||||
def right(self, idx):
|
||||
def right(self, idx: int) -> int:
|
||||
"""
|
||||
>>> segment_tree = SegmentTree(15)
|
||||
>>> segment_tree.right(1)
|
||||
3
|
||||
>>> segment_tree.right(2)
|
||||
5
|
||||
>>> segment_tree.right(12)
|
||||
25
|
||||
"""
|
||||
return idx * 2 + 1
|
||||
|
||||
def build(self, idx, l, r, A): # noqa: E741
|
||||
if l == r: # noqa: E741
|
||||
self.st[idx] = A[l - 1]
|
||||
def build(
|
||||
self, idx: int, left_element: int, right_element: int, A: List[int]
|
||||
) -> None:
|
||||
if left_element == right_element:
|
||||
self.st[idx] = A[left_element - 1]
|
||||
else:
|
||||
mid = (l + r) // 2
|
||||
self.build(self.left(idx), l, mid, A)
|
||||
self.build(self.right(idx), mid + 1, r, A)
|
||||
mid = (left_element + right_element) // 2
|
||||
self.build(self.left(idx), left_element, mid, A)
|
||||
self.build(self.right(idx), mid + 1, right_element, A)
|
||||
self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)])
|
||||
|
||||
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N)
|
||||
# for each update)
|
||||
def update(self, idx, l, r, a, b, val): # noqa: E741
|
||||
def update(
|
||||
self, idx: int, left_element: int, right_element: int, a: int, b: int, val: int
|
||||
) -> bool:
|
||||
"""
|
||||
update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N)
|
||||
for each update)
|
||||
|
||||
update(1, 1, N, a, b, v) for update val v to [a,b]
|
||||
"""
|
||||
if self.flag[idx] is True:
|
||||
self.st[idx] = self.lazy[idx]
|
||||
self.flag[idx] = False
|
||||
if l != r: # noqa: E741
|
||||
if left_element != right_element:
|
||||
self.lazy[self.left(idx)] = self.lazy[idx]
|
||||
self.lazy[self.right(idx)] = self.lazy[idx]
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
|
||||
if r < a or l > b:
|
||||
if right_element < a or left_element > b:
|
||||
return True
|
||||
if l >= a and r <= b: # noqa: E741
|
||||
if left_element >= a and right_element <= b:
|
||||
self.st[idx] = val
|
||||
if l != r: # noqa: E741
|
||||
if left_element != right_element:
|
||||
self.lazy[self.left(idx)] = val
|
||||
self.lazy[self.right(idx)] = val
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
return True
|
||||
mid = (l + r) // 2
|
||||
self.update(self.left(idx), l, mid, a, b, val)
|
||||
self.update(self.right(idx), mid + 1, r, a, b, val)
|
||||
mid = (left_element + right_element) // 2
|
||||
self.update(self.left(idx), left_element, mid, a, b, val)
|
||||
self.update(self.right(idx), mid + 1, right_element, a, b, val)
|
||||
self.st[idx] = max(self.st[self.left(idx)], self.st[self.right(idx)])
|
||||
return True
|
||||
|
||||
# query with O(lg N)
|
||||
def query(self, idx, l, r, a, b): # noqa: E741
|
||||
def query(
|
||||
self, idx: int, left_element: int, right_element: int, a: int, b: int
|
||||
) -> int:
|
||||
"""
|
||||
query(1, 1, N, a, b) for query max of [a,b]
|
||||
>>> A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
|
||||
>>> segment_tree = SegmentTree(15)
|
||||
>>> segment_tree.build(1, 1, 15, A)
|
||||
>>> segment_tree.query(1, 1, 15, 4, 6)
|
||||
7
|
||||
>>> segment_tree.query(1, 1, 15, 7, 11)
|
||||
14
|
||||
>>> segment_tree.query(1, 1, 15, 7, 12)
|
||||
15
|
||||
"""
|
||||
if self.flag[idx] is True:
|
||||
self.st[idx] = self.lazy[idx]
|
||||
self.flag[idx] = False
|
||||
if l != r: # noqa: E741
|
||||
if left_element != right_element:
|
||||
self.lazy[self.left(idx)] = self.lazy[idx]
|
||||
self.lazy[self.right(idx)] = self.lazy[idx]
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
if r < a or l > b:
|
||||
if right_element < a or left_element > b:
|
||||
return -math.inf
|
||||
if l >= a and r <= b: # noqa: E741
|
||||
if left_element >= a and right_element <= b:
|
||||
return self.st[idx]
|
||||
mid = (l + r) // 2
|
||||
q1 = self.query(self.left(idx), l, mid, a, b)
|
||||
q2 = self.query(self.right(idx), mid + 1, r, a, b)
|
||||
mid = (left_element + right_element) // 2
|
||||
q1 = self.query(self.left(idx), left_element, mid, a, b)
|
||||
q2 = self.query(self.right(idx), mid + 1, right_element, a, b)
|
||||
return max(q1, q2)
|
||||
|
||||
def showData(self):
|
||||
def show_data(self) -> None:
|
||||
showList = []
|
||||
for i in range(1, N + 1):
|
||||
showList += [self.query(1, 1, self.N, i, i)]
|
||||
|
@ -96,4 +131,4 @@ if __name__ == "__main__":
|
|||
segt.update(1, 1, N, 1, 3, 111)
|
||||
print(segt.query(1, 1, N, 1, 15))
|
||||
segt.update(1, 1, N, 7, 8, 235)
|
||||
segt.showData()
|
||||
segt.show_data()
|
||||
|
|
|
@ -2,17 +2,29 @@
|
|||
# https://en.wikipedia.org/wiki/Breadth-first_search
|
||||
|
||||
import queue
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
|
||||
def swap(a, b):
|
||||
def swap(a: int, b: int) -> Tuple[int, int]:
|
||||
"""
|
||||
Return a tuple (b, a) when given two integers a and b
|
||||
>>> swap(2,3)
|
||||
(3, 2)
|
||||
>>> swap(3,4)
|
||||
(4, 3)
|
||||
>>> swap(67, 12)
|
||||
(12, 67)
|
||||
"""
|
||||
a ^= b
|
||||
b ^= a
|
||||
a ^= b
|
||||
return a, b
|
||||
|
||||
|
||||
# creating sparse table which saves each nodes 2^i-th parent
|
||||
def creatSparse(max_node, parent):
|
||||
def create_sparse(max_node: int, parent: List[List[int]]) -> List[List[int]]:
|
||||
"""
|
||||
creating sparse table which saves each nodes 2^i-th parent
|
||||
"""
|
||||
j = 1
|
||||
while (1 << j) < max_node:
|
||||
for i in range(1, max_node + 1):
|
||||
|
@ -22,7 +34,9 @@ def creatSparse(max_node, parent):
|
|||
|
||||
|
||||
# returns lca of node u,v
|
||||
def LCA(u, v, level, parent):
|
||||
def lowest_common_ancestor(
|
||||
u: int, v: int, level: List[int], parent: List[List[int]]
|
||||
) -> List[List[int]]:
|
||||
# u must be deeper in the tree than v
|
||||
if level[u] < level[v]:
|
||||
u, v = swap(u, v)
|
||||
|
@ -42,10 +56,18 @@ def LCA(u, v, level, parent):
|
|||
|
||||
|
||||
# runs a breadth first search from root node of the tree
|
||||
# sets every nodes direct parent
|
||||
# parent of root node is set to 0
|
||||
# calculates depth of each node from root node
|
||||
def bfs(level, parent, max_node, graph, root=1):
|
||||
def breadth_first_search(
|
||||
level: List[int],
|
||||
parent: List[List[int]],
|
||||
max_node: int,
|
||||
graph: Dict[int, int],
|
||||
root=1,
|
||||
) -> Tuple[List[int], List[List[int]]]:
|
||||
"""
|
||||
sets every nodes direct parent
|
||||
parent of root node is set to 0
|
||||
calculates depth of each node from root node
|
||||
"""
|
||||
level[root] = 0
|
||||
q = queue.Queue(maxsize=max_node)
|
||||
q.put(root)
|
||||
|
@ -59,7 +81,7 @@ def bfs(level, parent, max_node, graph, root=1):
|
|||
return level, parent
|
||||
|
||||
|
||||
def main():
|
||||
def main() -> None:
|
||||
max_node = 13
|
||||
# initializing with 0
|
||||
parent = [[0 for _ in range(max_node + 10)] for _ in range(20)]
|
||||
|
@ -80,14 +102,14 @@ def main():
|
|||
12: [],
|
||||
13: [],
|
||||
}
|
||||
level, parent = bfs(level, parent, max_node, graph, 1)
|
||||
parent = creatSparse(max_node, parent)
|
||||
print("LCA of node 1 and 3 is: ", LCA(1, 3, level, parent))
|
||||
print("LCA of node 5 and 6 is: ", LCA(5, 6, level, parent))
|
||||
print("LCA of node 7 and 11 is: ", LCA(7, 11, level, parent))
|
||||
print("LCA of node 6 and 7 is: ", LCA(6, 7, level, parent))
|
||||
print("LCA of node 4 and 12 is: ", LCA(4, 12, level, parent))
|
||||
print("LCA of node 8 and 8 is: ", LCA(8, 8, level, parent))
|
||||
level, parent = breadth_first_search(level, parent, max_node, graph, 1)
|
||||
parent = create_sparse(max_node, parent)
|
||||
print("LCA of node 1 and 3 is: ", lowest_common_ancestor(1, 3, level, parent))
|
||||
print("LCA of node 5 and 6 is: ", lowest_common_ancestor(5, 6, level, parent))
|
||||
print("LCA of node 7 and 11 is: ", lowest_common_ancestor(7, 11, level, parent))
|
||||
print("LCA of node 6 and 7 is: ", lowest_common_ancestor(6, 7, level, parent))
|
||||
print("LCA of node 4 and 12 is: ", lowest_common_ancestor(4, 12, level, parent))
|
||||
print("LCA of node 8 and 8 is: ", lowest_common_ancestor(8, 8, level, parent))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue
Block a user