mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Merge branch 'master' into modernize-python2-code
This commit is contained in:
commit
2ed1bad747
58
File_Transfer_Protocol/ftp_client_server.py
Normal file
58
File_Transfer_Protocol/ftp_client_server.py
Normal file
|
@ -0,0 +1,58 @@
|
|||
# server
|
||||
|
||||
import socket # Import socket module
|
||||
|
||||
port = 60000 # Reserve a port for your service.
|
||||
s = socket.socket() # Create a socket object
|
||||
host = socket.gethostname() # Get local machine name
|
||||
s.bind((host, port)) # Bind to the port
|
||||
s.listen(5) # Now wait for client connection.
|
||||
|
||||
print 'Server listening....'
|
||||
|
||||
while True:
|
||||
conn, addr = s.accept() # Establish connection with client.
|
||||
print 'Got connection from', addr
|
||||
data = conn.recv(1024)
|
||||
print('Server received', repr(data))
|
||||
|
||||
filename='mytext.txt'
|
||||
f = open(filename,'rb')
|
||||
l = f.read(1024)
|
||||
while (l):
|
||||
conn.send(l)
|
||||
print('Sent ',repr(l))
|
||||
l = f.read(1024)
|
||||
f.close()
|
||||
|
||||
print('Done sending')
|
||||
conn.send('Thank you for connecting')
|
||||
conn.close()
|
||||
|
||||
|
||||
# client side server
|
||||
|
||||
import socket # Import socket module
|
||||
|
||||
s = socket.socket() # Create a socket object
|
||||
host = socket.gethostname() # Get local machine name
|
||||
port = 60000 # Reserve a port for your service.
|
||||
|
||||
s.connect((host, port))
|
||||
s.send("Hello server!")
|
||||
|
||||
with open('received_file', 'wb') as f:
|
||||
print 'file opened'
|
||||
while True:
|
||||
print('receiving data...')
|
||||
data = s.recv(1024)
|
||||
print('data=%s', (data))
|
||||
if not data:
|
||||
break
|
||||
# write data to a file
|
||||
f.write(data)
|
||||
|
||||
f.close()
|
||||
print('Successfully get the file')
|
||||
s.close()
|
||||
print('connection closed')
|
20
Maths/ModularExponential.py
Normal file
20
Maths/ModularExponential.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
def modularExponential(base, power, mod):
|
||||
if power < 0:
|
||||
return -1
|
||||
base %= mod
|
||||
result = 1
|
||||
|
||||
while power > 0:
|
||||
if power & 1:
|
||||
result = (result * base) % mod
|
||||
power = power >> 1
|
||||
base = (base * base) % mod
|
||||
return result
|
||||
|
||||
|
||||
def main():
|
||||
print(modularExponential(3, 200, 13))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
190
Neural_Network/bpnn.py
Normal file
190
Neural_Network/bpnn.py
Normal file
|
@ -0,0 +1,190 @@
|
|||
'''
|
||||
|
||||
A Framework of Back Propagation Neural Network(BP) model
|
||||
|
||||
Easy to use:
|
||||
* add many layers as you want !!!
|
||||
* clearly see how the loss decreasing
|
||||
Easy to expand:
|
||||
* more activation functions
|
||||
* more loss functions
|
||||
* more optimization method
|
||||
|
||||
Author: Stephen Lee
|
||||
Github : https://github.com/RiptideBo
|
||||
Date: 2017.11.23
|
||||
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1 / (1 + np.exp(-1 * x))
|
||||
|
||||
class DenseLayer():
|
||||
'''
|
||||
Layers of BP neural network
|
||||
'''
|
||||
def __init__(self,units,activation=None,learning_rate=None,is_input_layer=False):
|
||||
'''
|
||||
common connected layer of bp network
|
||||
:param units: numbers of neural units
|
||||
:param activation: activation function
|
||||
:param learning_rate: learning rate for paras
|
||||
:param is_input_layer: whether it is input layer or not
|
||||
'''
|
||||
self.units = units
|
||||
self.weight = None
|
||||
self.bias = None
|
||||
self.activation = activation
|
||||
if learning_rate is None:
|
||||
learning_rate = 0.3
|
||||
self.learn_rate = learning_rate
|
||||
self.is_input_layer = is_input_layer
|
||||
|
||||
def initializer(self,back_units):
|
||||
self.weight = np.asmatrix(np.random.normal(0,0.5,(self.units,back_units)))
|
||||
self.bias = np.asmatrix(np.random.normal(0,0.5,self.units)).T
|
||||
if self.activation is None:
|
||||
self.activation = sigmoid
|
||||
|
||||
def cal_gradient(self):
|
||||
if self.activation == sigmoid:
|
||||
gradient_mat = np.dot(self.output ,(1- self.output).T)
|
||||
gradient_activation = np.diag(np.diag(gradient_mat))
|
||||
else:
|
||||
gradient_activation = 1
|
||||
return gradient_activation
|
||||
|
||||
def forward_propagation(self,xdata):
|
||||
self.xdata = xdata
|
||||
if self.is_input_layer:
|
||||
# input layer
|
||||
self.wx_plus_b = xdata
|
||||
self.output = xdata
|
||||
return xdata
|
||||
else:
|
||||
self.wx_plus_b = np.dot(self.weight,self.xdata) - self.bias
|
||||
self.output = self.activation(self.wx_plus_b)
|
||||
return self.output
|
||||
|
||||
def back_propagation(self,gradient):
|
||||
|
||||
gradient_activation = self.cal_gradient() # i * i 维
|
||||
gradient = np.asmatrix(np.dot(gradient.T,gradient_activation))
|
||||
|
||||
self._gradient_weight = np.asmatrix(self.xdata)
|
||||
self._gradient_bias = -1
|
||||
self._gradient_x = self.weight
|
||||
|
||||
self.gradient_weight = np.dot(gradient.T,self._gradient_weight.T)
|
||||
self.gradient_bias = gradient * self._gradient_bias
|
||||
self.gradient = np.dot(gradient,self._gradient_x).T
|
||||
# ----------------------upgrade
|
||||
# -----------the Negative gradient direction --------
|
||||
self.weight = self.weight - self.learn_rate * self.gradient_weight
|
||||
self.bias = self.bias - self.learn_rate * self.gradient_bias.T
|
||||
|
||||
return self.gradient
|
||||
|
||||
|
||||
class BPNN():
|
||||
'''
|
||||
Back Propagation Neural Network model
|
||||
'''
|
||||
def __init__(self):
|
||||
self.layers = []
|
||||
self.train_mse = []
|
||||
self.fig_loss = plt.figure()
|
||||
self.ax_loss = self.fig_loss.add_subplot(1,1,1)
|
||||
|
||||
def add_layer(self,layer):
|
||||
self.layers.append(layer)
|
||||
|
||||
def build(self):
|
||||
for i,layer in enumerate(self.layers[:]):
|
||||
if i < 1:
|
||||
layer.is_input_layer = True
|
||||
else:
|
||||
layer.initializer(self.layers[i-1].units)
|
||||
|
||||
def summary(self):
|
||||
for i,layer in enumerate(self.layers[:]):
|
||||
print('------- layer %d -------'%i)
|
||||
print('weight.shape ',np.shape(layer.weight))
|
||||
print('bias.shape ',np.shape(layer.bias))
|
||||
|
||||
def train(self,xdata,ydata,train_round,accuracy):
|
||||
self.train_round = train_round
|
||||
self.accuracy = accuracy
|
||||
|
||||
self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1)
|
||||
|
||||
x_shape = np.shape(xdata)
|
||||
for round_i in range(train_round):
|
||||
all_loss = 0
|
||||
for row in range(x_shape[0]):
|
||||
_xdata = np.asmatrix(xdata[row,:]).T
|
||||
_ydata = np.asmatrix(ydata[row,:]).T
|
||||
|
||||
# forward propagation
|
||||
for layer in self.layers:
|
||||
_xdata = layer.forward_propagation(_xdata)
|
||||
|
||||
loss, gradient = self.cal_loss(_ydata, _xdata)
|
||||
all_loss = all_loss + loss
|
||||
|
||||
# back propagation
|
||||
# the input_layer does not upgrade
|
||||
for layer in self.layers[:0:-1]:
|
||||
gradient = layer.back_propagation(gradient)
|
||||
|
||||
mse = all_loss/x_shape[0]
|
||||
self.train_mse.append(mse)
|
||||
|
||||
self.plot_loss()
|
||||
|
||||
if mse < self.accuracy:
|
||||
print('----达到精度----')
|
||||
return mse
|
||||
|
||||
def cal_loss(self,ydata,ydata_):
|
||||
self.loss = np.sum(np.power((ydata - ydata_),2))
|
||||
self.loss_gradient = 2 * (ydata_ - ydata)
|
||||
# vector (shape is the same as _ydata.shape)
|
||||
return self.loss,self.loss_gradient
|
||||
|
||||
def plot_loss(self):
|
||||
if self.ax_loss.lines:
|
||||
self.ax_loss.lines.remove(self.ax_loss.lines[0])
|
||||
self.ax_loss.plot(self.train_mse, 'r-')
|
||||
plt.ion()
|
||||
plt.show()
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
|
||||
|
||||
def example():
|
||||
|
||||
x = np.random.randn(10,10)
|
||||
y = np.asarray([[0.8,0.4],[0.4,0.3],[0.34,0.45],[0.67,0.32],
|
||||
[0.88,0.67],[0.78,0.77],[0.55,0.66],[0.55,0.43],[0.54,0.1],
|
||||
[0.1,0.5]])
|
||||
|
||||
model = BPNN()
|
||||
model.add_layer(DenseLayer(10))
|
||||
model.add_layer(DenseLayer(20))
|
||||
model.add_layer(DenseLayer(30))
|
||||
model.add_layer(DenseLayer(2))
|
||||
|
||||
model.build()
|
||||
|
||||
model.summary()
|
||||
|
||||
model.train(xdata=x,ydata=y,train_round=100,accuracy=0.01)
|
||||
|
||||
if __name__ == '__main__':
|
||||
example()
|
|
@ -1,152 +0,0 @@
|
|||
#-*- coding:utf-8 -*-
|
||||
'''
|
||||
Author: Stephen Lee
|
||||
Date: 2017.9.21
|
||||
|
||||
BP neural network with three layers
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class Bpnn():
|
||||
|
||||
def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3):
|
||||
'''
|
||||
:param n_layer1: number of input layer
|
||||
:param n_layer2: number of hiden layer
|
||||
:param n_layer3: number of output layer
|
||||
:param rate_w: rate of weight learning
|
||||
:param rate_t: rate of threshold learning
|
||||
'''
|
||||
self.num1 = n_layer1
|
||||
self.num2 = n_layer2
|
||||
self.num3 = n_layer3
|
||||
self.rate_weight = rate_w
|
||||
self.rate_thre = rate_t
|
||||
self.thre2 = -2*np.random.rand(self.num2)+1
|
||||
self.thre3 = -2*np.random.rand(self.num3)+1
|
||||
self.vji = np.mat(-2*np.random.rand(self.num2, self.num1)+1)
|
||||
self.wkj = np.mat(-2*np.random.rand(self.num3, self.num2)+1)
|
||||
|
||||
def sig(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def sig_plain(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def do_round(self,x):
|
||||
return round(x, 3)
|
||||
|
||||
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy, draw_e=False):
|
||||
'''
|
||||
:param patterns: the number of patterns
|
||||
:param data_train: training data x; numpy.ndarray
|
||||
:param data_teach: training data y; numpy.ndarray
|
||||
:param n_repeat: echoes
|
||||
:param error_accuracy: error accuracy
|
||||
:return: None
|
||||
'''
|
||||
data_train = np.asarray(data_train)
|
||||
data_teach = np.asarray(data_teach)
|
||||
# print('-------------------Start Training-------------------------')
|
||||
# print(' - - Shape: Train_Data ',np.shape(data_train))
|
||||
# print(' - - Shape: Teach_Data ',np.shape(data_teach))
|
||||
rp = 0
|
||||
all_mse = []
|
||||
mse = 10000
|
||||
while rp < n_repeat and mse >= error_accuracy:
|
||||
alle = 0
|
||||
final_out = []
|
||||
for g in range(np.shape(data_train)[0]):
|
||||
net_i = data_train[g]
|
||||
out1 = net_i
|
||||
|
||||
net_j = out1 * self.vji.T - self.thre2
|
||||
out2=self.sig(net_j)
|
||||
|
||||
net_k = out2 * self.wkj.T - self.thre3
|
||||
out3 = self.sig(net_k)
|
||||
|
||||
# learning process
|
||||
pd_k_all = np.multiply(np.multiply(out3,(1 - out3)),(data_teach[g]-out3))
|
||||
pd_j_all = np.multiply(pd_k_all * self.wkj,np.multiply(out2,1-out2))
|
||||
#upgrade weight
|
||||
self.wkj = self.wkj + pd_k_all.T * out2 *self.rate_weight
|
||||
self.vji = self.vji + pd_j_all.T * out1 * self.rate_weight
|
||||
#upgrade threshold
|
||||
self.thre3 = self.thre3 - pd_k_all * self.rate_thre
|
||||
self.thre2 = self.thre2 - pd_j_all * self.rate_thre
|
||||
#calculate sum of error
|
||||
errors = np.sum(abs((data_teach[g] - out3)))
|
||||
|
||||
alle = alle + errors
|
||||
final_out.extend(out3.getA().tolist())
|
||||
final_out3 = [list(map(self.do_round,each)) for each in final_out]
|
||||
|
||||
rp = rp + 1
|
||||
mse = alle/patterns
|
||||
all_mse.append(mse)
|
||||
def draw_error():
|
||||
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
|
||||
plt.plot(all_mse, '+-')
|
||||
plt.plot(yplot, 'r--')
|
||||
plt.xlabel('Learning Times')
|
||||
plt.ylabel('All_mse')
|
||||
plt.grid(True,alpha = 0.7)
|
||||
plt.show()
|
||||
# print('------------------Training Complished---------------------')
|
||||
# print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
|
||||
# print(' - - Last Output: ', final_out3)
|
||||
if draw_e:
|
||||
draw_error()
|
||||
|
||||
def predict(self,data_test):
|
||||
'''
|
||||
:param data_test: data test, numpy.ndarray
|
||||
:return: predict output data
|
||||
'''
|
||||
data_test = np.asarray(data_test)
|
||||
produce_out = []
|
||||
# print('-------------------Start Testing-------------------------')
|
||||
# print(' - - Shape: Test_Data ',np.shape(data_test))
|
||||
# print(np.shape(data_test))
|
||||
for g in range(np.shape(data_test)[0]):
|
||||
|
||||
net_i = data_test[g]
|
||||
out1 = net_i
|
||||
|
||||
net_j = out1 * self.vji.T - self.thre2
|
||||
out2 = self.sig(net_j)
|
||||
|
||||
net_k = out2 * self.wkj.T - self.thre3
|
||||
out3 = self.sig(net_k)
|
||||
produce_out.extend(out3.getA().tolist())
|
||||
res = [list(map(self.do_round,each)) for each in produce_out]
|
||||
return np.asarray(res)
|
||||
|
||||
|
||||
def main():
|
||||
#example data
|
||||
data_x = [[1,2,3,4],
|
||||
[5,6,7,8],
|
||||
[2,2,3,4],
|
||||
[7,7,8,8]]
|
||||
data_y = [[1,0,0,0],
|
||||
[0,1,0,0],
|
||||
[0,0,1,0],
|
||||
[0,0,0,1]]
|
||||
|
||||
test_x = [[1,2,3,4],
|
||||
[3,2,3,4]]
|
||||
|
||||
#building network model
|
||||
model = Bpnn(4,10,4)
|
||||
#training the model
|
||||
model.trian(patterns=4,data_train=data_x,data_teach=data_y,
|
||||
n_repeat=100,error_accuracy=0.1,draw_e=True)
|
||||
#predicting data
|
||||
model.predict(test_x)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -13,8 +13,8 @@ try:
|
|||
except NameError:
|
||||
raw_input = input # Python 3
|
||||
n = int(raw_input().strip())
|
||||
sum=0;
|
||||
num=0;
|
||||
sum=0
|
||||
num=0
|
||||
while(1):
|
||||
num+=3
|
||||
if(num>=n):
|
||||
|
@ -44,4 +44,5 @@ while(1):
|
|||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
|
||||
print(sum);
|
||||
|
|
|
@ -14,7 +14,9 @@ except NameError:
|
|||
raw_input = input # Python 3
|
||||
|
||||
n = int(raw_input().strip())
|
||||
i=1; j=2; sum=0
|
||||
i=1
|
||||
j=2
|
||||
sum=0
|
||||
while(j<=n):
|
||||
if((j&1)==0): #can also use (j%2==0)
|
||||
sum+=j
|
||||
|
|
|
@ -18,7 +18,7 @@ def isprime(no):
|
|||
return False
|
||||
return True
|
||||
|
||||
max=0
|
||||
maxNumber = 0
|
||||
n=int(input())
|
||||
if(isprime(n)):
|
||||
print(n)
|
||||
|
@ -32,8 +32,8 @@ else:
|
|||
for i in range(3,n1,2):
|
||||
if(n%i==0):
|
||||
if(isprime(n/i)):
|
||||
max=n/i
|
||||
maxNumber = n/i
|
||||
break
|
||||
elif(isprime(i)):
|
||||
max=i
|
||||
print(max)
|
||||
maxNumber = i
|
||||
print(maxNumber)
|
||||
|
|
|
@ -4,13 +4,26 @@ A palindromic number reads the same both ways. The largest palindrome made from
|
|||
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
n=int(input())
|
||||
for i in range(n-1,10000,-1):
|
||||
temp=str(i)
|
||||
if(temp==temp[::-1]):
|
||||
j=999
|
||||
while(j!=99):
|
||||
if((i%j==0) and (len(str(i/j))==3)):
|
||||
print(i)
|
||||
limit = int(input("limit? "))
|
||||
|
||||
# fetchs the next number
|
||||
for number in range(limit-1,10000,-1):
|
||||
|
||||
# converts number into string.
|
||||
strNumber = str(number)
|
||||
|
||||
# checks whether 'strNumber' is a palindrome.
|
||||
if(strNumber == strNumber[::-1]):
|
||||
|
||||
divisor = 999
|
||||
|
||||
# if 'number' is a product of two 3-digit numbers
|
||||
# then number is the answer otherwise fetch next number.
|
||||
while(divisor != 99):
|
||||
|
||||
if((number % divisor == 0) and (len(str(number / divisor)) == 3)):
|
||||
|
||||
print(number)
|
||||
exit(0)
|
||||
j-=1
|
||||
|
||||
divisor -=1
|
16
Project Euler/Problem 07/sol2.py
Normal file
16
Project Euler/Problem 07/sol2.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the Nth prime number?
|
||||
def isprime(number):
|
||||
for i in range(2,int(number**0.5)+1):
|
||||
if number%i==0:
|
||||
return False
|
||||
return True
|
||||
n = int(input('Enter The N\'th Prime Number You Want To Get: ')) # Ask For The N'th Prime Number Wanted
|
||||
primes = []
|
||||
num = 2
|
||||
while len(primes) < n:
|
||||
if isprime(num):
|
||||
primes.append(num)
|
||||
num += 1
|
||||
else:
|
||||
num += 1
|
||||
print(primes[len(primes) - 1])
|
15
Project Euler/Problem 16/sol1.py
Normal file
15
Project Euler/Problem 16/sol1.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
power = int(input("Enter the power of 2: "))
|
||||
num = 2**power
|
||||
|
||||
string_num = str(num)
|
||||
|
||||
list_num = list(string_num)
|
||||
|
||||
sum_of_num = 0
|
||||
|
||||
print("2 ^",power,"=",num)
|
||||
|
||||
for i in list_num:
|
||||
sum_of_num += int(i)
|
||||
|
||||
print("Sum of the digits are:",sum_of_num)
|
27
Project Euler/Problem 20/sol1.py
Normal file
27
Project Euler/Problem 20/sol1.py
Normal file
|
@ -0,0 +1,27 @@
|
|||
# Finding the factorial.
|
||||
def factorial(n):
|
||||
fact = 1
|
||||
for i in range(1,n+1):
|
||||
fact *= i
|
||||
return fact
|
||||
|
||||
# Spliting the digits and adding it.
|
||||
def split_and_add(number):
|
||||
sum_of_digits = 0
|
||||
while(number>0):
|
||||
last_digit = number % 10
|
||||
sum_of_digits += last_digit
|
||||
number = int(number/10) # Removing the last_digit from the given number.
|
||||
return sum_of_digits
|
||||
|
||||
# Taking the user input.
|
||||
number = int(input("Enter the Number: "))
|
||||
|
||||
# Assigning the factorial from the factorial function.
|
||||
factorial = factorial(number)
|
||||
|
||||
# Spliting and adding the factorial into answer.
|
||||
answer = split_and_add(factorial)
|
||||
|
||||
# Printing the answer.
|
||||
print(answer)
|
34
Project Euler/Problem 29/solution.py
Normal file
34
Project Euler/Problem 29/solution.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
def main():
|
||||
"""
|
||||
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
|
||||
|
||||
22=4, 23=8, 24=16, 25=32
|
||||
32=9, 33=27, 34=81, 35=243
|
||||
42=16, 43=64, 44=256, 45=1024
|
||||
52=25, 53=125, 54=625, 55=3125
|
||||
If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:
|
||||
|
||||
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
|
||||
|
||||
How many distinct terms are in the sequence generated by ab for 2 <= a <= 100 and 2 <= b <= 100?
|
||||
"""
|
||||
|
||||
collectPowers = set()
|
||||
|
||||
currentPow = 0
|
||||
|
||||
N = 101 # maximum limit
|
||||
|
||||
for a in range(2,N):
|
||||
|
||||
for b in range (2,N):
|
||||
|
||||
currentPow = a**b # calculates the current power
|
||||
collectPowers.add(currentPow) # adds the result to the set
|
||||
|
||||
|
||||
print "Number of terms ", len(collectPowers)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -49,3 +49,10 @@ PROBLEMS:
|
|||
Using the rule above and starting with 13, we generate the following sequence:
|
||||
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
|
||||
Which starting number, under one million, produces the longest chain?
|
||||
|
||||
16. 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
|
||||
What is the sum of the digits of the number 2^1000?
|
||||
20. n! means n × (n − 1) × ... × 3 × 2 × 1
|
||||
For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800,
|
||||
and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
|
||||
Find the sum of the digits in the number 100!
|
||||
|
|
29
dynamic_programming/abbreviation.py
Normal file
29
dynamic_programming/abbreviation.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
"""
|
||||
https://www.hackerrank.com/challenges/abbr/problem
|
||||
You can perform the following operation on some string, :
|
||||
|
||||
1. Capitalize zero or more of 's lowercase letters at some index i
|
||||
(i.e., make them uppercase).
|
||||
2. Delete all of the remaining lowercase letters in .
|
||||
|
||||
Example:
|
||||
a=daBcd and b="ABC"
|
||||
daBcd -> capitalize a and c(dABCd) -> remove d (ABC)
|
||||
"""
|
||||
def abbr(a, b):
|
||||
n = len(a)
|
||||
m = len(b)
|
||||
dp = [[False for _ in range(m + 1)] for _ in range(n + 1)]
|
||||
dp[0][0] = True
|
||||
for i in range(n):
|
||||
for j in range(m + 1):
|
||||
if dp[i][j]:
|
||||
if j < m and a[i].upper() == b[j]:
|
||||
dp[i + 1][j + 1] = True
|
||||
if a[i].islower():
|
||||
dp[i + 1][j] = True
|
||||
return dp[n][m]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print abbr("daBcd", "ABC") # expect True
|
|
@ -20,7 +20,7 @@ def findMin(arr):
|
|||
if (arr[i-1] <= j):
|
||||
dp[i][j] = dp[i][j] or dp[i-1][j-arr[i-1]]
|
||||
|
||||
for j in range(s/2, -1, -1):
|
||||
for j in range(int(s/2), -1, -1):
|
||||
if dp[n][j] == True:
|
||||
diff = s-2*j
|
||||
break;
|
||||
|
|
15
machine_learning/scoring_functions.py
Normal file → Executable file
15
machine_learning/scoring_functions.py
Normal file → Executable file
|
@ -61,3 +61,18 @@ def rmsle(predict, actual):
|
|||
score = np.sqrt(mean_square_diff)
|
||||
|
||||
return score
|
||||
|
||||
#Mean Bias Deviation
|
||||
def mbd(predict, actual):
|
||||
predict = np.array(predict)
|
||||
actual = np.array(actual)
|
||||
|
||||
difference = predict - actual
|
||||
numerator = np.sum(difference) / len(predict)
|
||||
denumerator = np.sum(actual) / len(predict)
|
||||
print str(numerator)
|
||||
print str(denumerator)
|
||||
|
||||
score = float(numerator) / denumerator * 100
|
||||
|
||||
return score
|
605
other/primelib.py
Normal file
605
other/primelib.py
Normal file
|
@ -0,0 +1,605 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Oct 5 16:44:23 2017
|
||||
|
||||
@author: Christian Bender
|
||||
|
||||
This python library contains some useful functions to deal with
|
||||
prime numbers and whole numbers.
|
||||
|
||||
Overview:
|
||||
|
||||
isPrime(number)
|
||||
sieveEr(N)
|
||||
getPrimeNumbers(N)
|
||||
primeFactorization(number)
|
||||
greatestPrimeFactor(number)
|
||||
smallestPrimeFactor(number)
|
||||
getPrime(n)
|
||||
getPrimesBetween(pNumber1, pNumber2)
|
||||
|
||||
----
|
||||
|
||||
isEven(number)
|
||||
isOdd(number)
|
||||
gcd(number1, number2) // greatest common divisor
|
||||
kgV(number1, number2) // least common multiple
|
||||
getDivisors(number) // all divisors of 'number' inclusive 1, number
|
||||
isPerfectNumber(number)
|
||||
|
||||
NEW-FUNCTIONS
|
||||
|
||||
simplifyFraction(numerator, denominator)
|
||||
factorial (n) // n!
|
||||
fib (n) // calculate the n-th fibonacci term.
|
||||
|
||||
-----
|
||||
|
||||
goldbach(number) // Goldbach's assumption
|
||||
|
||||
"""
|
||||
|
||||
def isPrime(number):
|
||||
"""
|
||||
input: positive integer 'number'
|
||||
returns true if 'number' is prime otherwise false.
|
||||
"""
|
||||
import math # for function sqrt
|
||||
|
||||
# precondition
|
||||
assert isinstance(number,int) and (number >= 0) , \
|
||||
"'number' must been an int and positive"
|
||||
|
||||
status = True
|
||||
|
||||
# 0 and 1 are none primes.
|
||||
if number <= 1:
|
||||
status = False
|
||||
|
||||
for divisor in range(2,int(round(math.sqrt(number)))+1):
|
||||
|
||||
# if 'number' divisible by 'divisor' then sets 'status'
|
||||
# of false and break up the loop.
|
||||
if number % divisor == 0:
|
||||
status = False
|
||||
break
|
||||
|
||||
# precondition
|
||||
assert isinstance(status,bool), "'status' must been from type bool"
|
||||
|
||||
return status
|
||||
|
||||
# ------------------------------------------
|
||||
|
||||
def sieveEr(N):
|
||||
"""
|
||||
input: positive integer 'N' > 2
|
||||
returns a list of prime numbers from 2 up to N.
|
||||
|
||||
This function implements the algorithm called
|
||||
sieve of erathostenes.
|
||||
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2"
|
||||
|
||||
# beginList: conatins all natural numbers from 2 upt to N
|
||||
beginList = [x for x in range(2,N+1)]
|
||||
|
||||
ans = [] # this list will be returns.
|
||||
|
||||
# actual sieve of erathostenes
|
||||
for i in range(len(beginList)):
|
||||
|
||||
for j in range(i+1,len(beginList)):
|
||||
|
||||
if (beginList[i] != 0) and \
|
||||
(beginList[j] % beginList[i] == 0):
|
||||
beginList[j] = 0
|
||||
|
||||
# filters actual prime numbers.
|
||||
ans = [x for x in beginList if x != 0]
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,list), "'ans' must been from type list"
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
# --------------------------------
|
||||
|
||||
def getPrimeNumbers(N):
|
||||
"""
|
||||
input: positive integer 'N' > 2
|
||||
returns a list of prime numbers from 2 up to N (inclusive)
|
||||
This function is more efficient as function 'sieveEr(...)'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2"
|
||||
|
||||
ans = []
|
||||
|
||||
# iterates over all numbers between 2 up to N+1
|
||||
# if a number is prime then appends to list 'ans'
|
||||
for number in range(2,N+1):
|
||||
|
||||
if isPrime(number):
|
||||
|
||||
ans.append(number)
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,list), "'ans' must been from type list"
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
# -----------------------------------------
|
||||
|
||||
def primeFactorization(number):
|
||||
"""
|
||||
input: positive integer 'number'
|
||||
returns a list of the prime number factors of 'number'
|
||||
"""
|
||||
|
||||
import math # for function sqrt
|
||||
|
||||
# precondition
|
||||
assert isinstance(number,int) and number >= 0, \
|
||||
"'number' must been an int and >= 0"
|
||||
|
||||
ans = [] # this list will be returns of the function.
|
||||
|
||||
# potential prime number factors.
|
||||
|
||||
factor = 2
|
||||
|
||||
quotient = number
|
||||
|
||||
|
||||
if number == 0 or number == 1:
|
||||
|
||||
ans.append(number)
|
||||
|
||||
# if 'number' not prime then builds the prime factorization of 'number'
|
||||
elif not isPrime(number):
|
||||
|
||||
while (quotient != 1):
|
||||
|
||||
if isPrime(factor) and (quotient % factor == 0):
|
||||
ans.append(factor)
|
||||
quotient /= factor
|
||||
else:
|
||||
factor += 1
|
||||
|
||||
else:
|
||||
ans.append(number)
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,list), "'ans' must been from type list"
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
# -----------------------------------------
|
||||
|
||||
def greatestPrimeFactor(number):
|
||||
"""
|
||||
input: positive integer 'number' >= 0
|
||||
returns the greatest prime number factor of 'number'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number,int) and (number >= 0), \
|
||||
"'number' bust been an int and >= 0"
|
||||
|
||||
ans = 0
|
||||
|
||||
# prime factorization of 'number'
|
||||
primeFactors = primeFactorization(number)
|
||||
|
||||
ans = max(primeFactors)
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,int), "'ans' must been from type int"
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
# ----------------------------------------------
|
||||
|
||||
|
||||
def smallestPrimeFactor(number):
|
||||
"""
|
||||
input: integer 'number' >= 0
|
||||
returns the smallest prime number factor of 'number'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number,int) and (number >= 0), \
|
||||
"'number' bust been an int and >= 0"
|
||||
|
||||
ans = 0
|
||||
|
||||
# prime factorization of 'number'
|
||||
primeFactors = primeFactorization(number)
|
||||
|
||||
ans = min(primeFactors)
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,int), "'ans' must been from type int"
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
# ----------------------
|
||||
|
||||
def isEven(number):
|
||||
"""
|
||||
input: integer 'number'
|
||||
returns true if 'number' is even, otherwise false.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number, int), "'number' must been an int"
|
||||
assert isinstance(number % 2 == 0, bool), "compare bust been from type bool"
|
||||
|
||||
return number % 2 == 0
|
||||
|
||||
# ------------------------
|
||||
|
||||
def isOdd(number):
|
||||
"""
|
||||
input: integer 'number'
|
||||
returns true if 'number' is odd, otherwise false.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number, int), "'number' must been an int"
|
||||
assert isinstance(number % 2 != 0, bool), "compare bust been from type bool"
|
||||
|
||||
return number % 2 != 0
|
||||
|
||||
# ------------------------
|
||||
|
||||
|
||||
def goldbach(number):
|
||||
"""
|
||||
Goldbach's assumption
|
||||
input: a even positive integer 'number' > 2
|
||||
returns a list of two prime numbers whose sum is equal to 'number'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number,int) and (number > 2) and isEven(number), \
|
||||
"'number' must been an int, even and > 2"
|
||||
|
||||
ans = [] # this list will returned
|
||||
|
||||
# creates a list of prime numbers between 2 up to 'number'
|
||||
primeNumbers = getPrimeNumbers(number)
|
||||
lenPN = len(primeNumbers)
|
||||
|
||||
# run variable for while-loops.
|
||||
i = 0
|
||||
j = 1
|
||||
|
||||
# exit variable. for break up the loops
|
||||
loop = True
|
||||
|
||||
while (i < lenPN and loop):
|
||||
|
||||
j = i+1;
|
||||
|
||||
|
||||
while (j < lenPN and loop):
|
||||
|
||||
if primeNumbers[i] + primeNumbers[j] == number:
|
||||
loop = False
|
||||
ans.append(primeNumbers[i])
|
||||
ans.append(primeNumbers[j])
|
||||
|
||||
j += 1;
|
||||
|
||||
|
||||
i += 1
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,list) and (len(ans) == 2) and \
|
||||
(ans[0] + ans[1] == number) and isPrime(ans[0]) and isPrime(ans[1]), \
|
||||
"'ans' must contains two primes. And sum of elements must been eq 'number'"
|
||||
|
||||
return ans
|
||||
|
||||
# ----------------------------------------------
|
||||
|
||||
def gcd(number1,number2):
|
||||
"""
|
||||
Greatest common divisor
|
||||
input: two positive integer 'number1' and 'number2'
|
||||
returns the greatest common divisor of 'number1' and 'number2'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number1,int) and isinstance(number2,int) \
|
||||
and (number1 >= 0) and (number2 >= 0), \
|
||||
"'number1' and 'number2' must been positive integer."
|
||||
|
||||
rest = 0
|
||||
|
||||
while number2 != 0:
|
||||
|
||||
rest = number1 % number2
|
||||
number1 = number2
|
||||
number2 = rest
|
||||
|
||||
# precondition
|
||||
assert isinstance(number1,int) and (number1 >= 0), \
|
||||
"'number' must been from type int and positive"
|
||||
|
||||
return number1
|
||||
|
||||
# ----------------------------------------------------
|
||||
|
||||
def kgV(number1, number2):
|
||||
"""
|
||||
Least common multiple
|
||||
input: two positive integer 'number1' and 'number2'
|
||||
returns the least common multiple of 'number1' and 'number2'
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number1,int) and isinstance(number2,int) \
|
||||
and (number1 >= 1) and (number2 >= 1), \
|
||||
"'number1' and 'number2' must been positive integer."
|
||||
|
||||
ans = 1 # actual answer that will be return.
|
||||
|
||||
# for kgV (x,1)
|
||||
if number1 > 1 and number2 > 1:
|
||||
|
||||
# builds the prime factorization of 'number1' and 'number2'
|
||||
primeFac1 = primeFactorization(number1)
|
||||
primeFac2 = primeFactorization(number2)
|
||||
|
||||
elif number1 == 1 or number2 == 1:
|
||||
|
||||
primeFac1 = []
|
||||
primeFac2 = []
|
||||
ans = max(number1,number2)
|
||||
|
||||
count1 = 0
|
||||
count2 = 0
|
||||
|
||||
done = [] # captured numbers int both 'primeFac1' and 'primeFac2'
|
||||
|
||||
# iterates through primeFac1
|
||||
for n in primeFac1:
|
||||
|
||||
if n not in done:
|
||||
|
||||
if n in primeFac2:
|
||||
|
||||
count1 = primeFac1.count(n)
|
||||
count2 = primeFac2.count(n)
|
||||
|
||||
for i in range(max(count1,count2)):
|
||||
ans *= n
|
||||
|
||||
else:
|
||||
|
||||
count1 = primeFac1.count(n)
|
||||
|
||||
for i in range(count1):
|
||||
ans *= n
|
||||
|
||||
done.append(n)
|
||||
|
||||
# iterates through primeFac2
|
||||
for n in primeFac2:
|
||||
|
||||
if n not in done:
|
||||
|
||||
count2 = primeFac2.count(n)
|
||||
|
||||
for i in range(count2):
|
||||
ans *= n
|
||||
|
||||
done.append(n)
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,int) and (ans >= 0), \
|
||||
"'ans' must been from type int and positive"
|
||||
|
||||
return ans
|
||||
|
||||
# ----------------------------------
|
||||
|
||||
def getPrime(n):
|
||||
"""
|
||||
Gets the n-th prime number.
|
||||
input: positive integer 'n' >= 0
|
||||
returns the n-th prime number, beginning at index 0
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(n,int) and (n >= 0), "'number' must been a positive int"
|
||||
|
||||
index = 0
|
||||
ans = 2 # this variable holds the answer
|
||||
|
||||
while index < n:
|
||||
|
||||
index += 1
|
||||
|
||||
ans += 1 # counts to the next number
|
||||
|
||||
# if ans not prime then
|
||||
# runs to the next prime number.
|
||||
while not isPrime(ans):
|
||||
ans += 1
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,int) and isPrime(ans), \
|
||||
"'ans' must been a prime number and from type int"
|
||||
|
||||
return ans
|
||||
|
||||
# ---------------------------------------------------
|
||||
|
||||
def getPrimesBetween(pNumber1, pNumber2):
|
||||
"""
|
||||
input: prime numbers 'pNumber1' and 'pNumber2'
|
||||
pNumber1 < pNumber2
|
||||
returns a list of all prime numbers between 'pNumber1' (exclusiv)
|
||||
and 'pNumber2' (exclusiv)
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2), \
|
||||
"The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
|
||||
|
||||
number = pNumber1 + 1 # jump to the next number
|
||||
|
||||
ans = [] # this list will be returns.
|
||||
|
||||
# if number is not prime then
|
||||
# fetch the next prime number.
|
||||
while not isPrime(number):
|
||||
number += 1
|
||||
|
||||
while number < pNumber2:
|
||||
|
||||
ans.append(number)
|
||||
|
||||
number += 1
|
||||
|
||||
# fetch the next prime number.
|
||||
while not isPrime(number):
|
||||
number += 1
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans,list) and ans[0] != pNumber1 \
|
||||
and ans[len(ans)-1] != pNumber2, \
|
||||
"'ans' must been a list without the arguments"
|
||||
|
||||
# 'ans' contains not 'pNumber1' and 'pNumber2' !
|
||||
return ans
|
||||
|
||||
# ----------------------------------------------------
|
||||
|
||||
def getDivisors(n):
|
||||
"""
|
||||
input: positive integer 'n' >= 1
|
||||
returns all divisors of n (inclusive 1 and 'n')
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(n,int) and (n >= 1), "'n' must been int and >= 1"
|
||||
|
||||
from math import sqrt
|
||||
|
||||
ans = [] # will be returned.
|
||||
|
||||
for divisor in range(1,n+1):
|
||||
|
||||
if n % divisor == 0:
|
||||
ans.append(divisor)
|
||||
|
||||
|
||||
#precondition
|
||||
assert ans[0] == 1 and ans[len(ans)-1] == n, \
|
||||
"Error in function getDivisiors(...)"
|
||||
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
# ----------------------------------------------------
|
||||
|
||||
|
||||
def isPerfectNumber(number):
|
||||
"""
|
||||
input: positive integer 'number' > 1
|
||||
returns true if 'number' is a perfect number otherwise false.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number,int) and (number > 1), \
|
||||
"'number' must been an int and >= 1"
|
||||
|
||||
divisors = getDivisors(number)
|
||||
|
||||
# precondition
|
||||
assert isinstance(divisors,list) and(divisors[0] == 1) and \
|
||||
(divisors[len(divisors)-1] == number), \
|
||||
"Error in help-function getDivisiors(...)"
|
||||
|
||||
# summed all divisors up to 'number' (exclusive), hence [:-1]
|
||||
return sum(divisors[:-1]) == number
|
||||
|
||||
# ------------------------------------------------------------
|
||||
|
||||
def simplifyFraction(numerator, denominator):
|
||||
"""
|
||||
input: two integer 'numerator' and 'denominator'
|
||||
assumes: 'denominator' != 0
|
||||
returns: a tuple with simplify numerator and denominator.
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(numerator, int) and isinstance(denominator,int) \
|
||||
and (denominator != 0), \
|
||||
"The arguments must been from type int and 'denominator' != 0"
|
||||
|
||||
# build the greatest common divisor of numerator and denominator.
|
||||
gcdOfFraction = gcd(abs(numerator), abs(denominator))
|
||||
|
||||
# precondition
|
||||
assert isinstance(gcdOfFraction, int) and (numerator % gcdOfFraction == 0) \
|
||||
and (denominator % gcdOfFraction == 0), \
|
||||
"Error in function gcd(...,...)"
|
||||
|
||||
return (numerator // gcdOfFraction, denominator // gcdOfFraction)
|
||||
|
||||
# -----------------------------------------------------------------
|
||||
|
||||
def factorial(n):
|
||||
"""
|
||||
input: positive integer 'n'
|
||||
returns the factorial of 'n' (n!)
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(n,int) and (n >= 0), "'n' must been a int and >= 0"
|
||||
|
||||
ans = 1 # this will be return.
|
||||
|
||||
for factor in range(1,n+1):
|
||||
ans *= factor
|
||||
|
||||
return ans
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
def fib(n):
|
||||
"""
|
||||
input: positive integer 'n'
|
||||
returns the n-th fibonacci term , indexing by 0
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(n, int) and (n >= 0), "'n' must been an int and >= 0"
|
||||
|
||||
tmp = 0
|
||||
fib1 = 1
|
||||
ans = 1 # this will be return
|
||||
|
||||
for i in range(n-1):
|
||||
|
||||
tmp = ans
|
||||
ans += fib1
|
||||
fib1 = tmp
|
||||
|
||||
return ans
|
|
@ -1,15 +1,15 @@
|
|||
#Normal Distribution QuickSort
|
||||
# Normal Distribution QuickSort
|
||||
|
||||
|
||||
Algorithm implementing QuickSort Algorithm where the pivot element is chosen randomly between first and last elements of the array and the array elements are taken from a Standard Normal Distribution.
|
||||
This is different from the ordinary quicksort in the sense, that it applies more to real life problems , where elements usually follow a normal distribution. Also the pivot is randomized to make it a more generic one.
|
||||
|
||||
|
||||
##Array Elements
|
||||
## Array Elements
|
||||
|
||||
The array elements are taken from a Standard Normal Distribution , having mean = 0 and standard deviation 1.
|
||||
|
||||
####The code
|
||||
#### The code
|
||||
|
||||
```python
|
||||
|
||||
|
@ -52,7 +52,7 @@ The array elements are taken from a Standard Normal Distribution , having mean =
|
|||
|
||||
--
|
||||
|
||||
##Plotting the function for Checking 'The Number of Comparisons' taking place between Normal Distribution QuickSort and Ordinary QuickSort
|
||||
## Plotting the function for Checking 'The Number of Comparisons' taking place between Normal Distribution QuickSort and Ordinary QuickSort
|
||||
|
||||
```python
|
||||
>>>import matplotlib.pyplot as plt
|
||||
|
|
Loading…
Reference in New Issue
Block a user