diff --git a/machine_learning/sorted_vector_machines.py b/machine_learning/sorted_vector_machines.py new file mode 100644 index 000000000..92fa814c9 --- /dev/null +++ b/machine_learning/sorted_vector_machines.py @@ -0,0 +1,54 @@ +from sklearn.datasets import load_iris +from sklearn import svm +from sklearn.model_selection import train_test_split +import doctest + +# different functions implementing different types of SVM's +def NuSVC(train_x, train_y): + svc_NuSVC = svm.NuSVC() + svc_NuSVC.fit(train_x, train_y) + return svc_NuSVC + + +def Linearsvc(train_x, train_y): + svc_linear = svm.LinearSVC() + svc_linear.fit(train_x, train_y) + return svc_linear + + +def SVC(train_x, train_y): + # svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None) + # various parameters like "kernal","gamma","C" can effectively tuned for a given machine learning model. + SVC = svm.SVC(gamma="auto") + SVC.fit(train_x, train_y) + return SVC + + +def test(X_new): + """ + 3 test cases to be passed + an array containing the sepal length (cm), sepal width (cm),petal length (cm),petal width (cm) + based on which the target name will be predicted + >>> test([1,2,1,4]) + 'virginica' + >>> test([5, 2, 4, 1]) + 'versicolor' + >>> test([6,3,4,1]) + 'versicolor' + + """ + iris = load_iris() + # splitting the dataset to test and train + train_x, test_x, train_y, test_y = train_test_split( + iris["data"], iris["target"], random_state=4 + ) + # any of the 3 types of SVM can be used + # current_model=SVC(train_x, train_y) + # current_model=NuSVC(train_x, train_y) + current_model = Linearsvc(train_x, train_y) + prediction = current_model.predict([X_new]) + return iris["target_names"][prediction][0] + + +if __name__ == "__main__": + doctest.testmod()