mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-07 10:00:55 +00:00
Area Under a Curve Algorithm (#1701)
* A recursive insertion sort * added doctests and typehints * Added arc length and numerical integration calculators * fixed doc test * Fixed some conversion errors * Fixed some commenting * Deleted numerical integration to allow 1 file per push * Changed string formatting method * Added program to calculate trapezoidal area under curve * Deleted files ensure 1 pull request per file * file name changed * Update area_under_curve.py Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
e25d4248a3
commit
3042702d04
55
maths/area_under_curve.py
Normal file
55
maths/area_under_curve.py
Normal file
|
@ -0,0 +1,55 @@
|
||||||
|
"""
|
||||||
|
Approximates the area under the curve using the trapezoidal rule
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Callable, Union
|
||||||
|
|
||||||
|
def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]],
|
||||||
|
x_start: Union[int, float],
|
||||||
|
x_end: Union[int, float],
|
||||||
|
steps: int = 100) -> float:
|
||||||
|
"""
|
||||||
|
Treats curve as a collection of linear lines and sums the area of the
|
||||||
|
trapezium shape they form
|
||||||
|
:param fnc: a function which defines a curve
|
||||||
|
:param x_start: left end point to indicate the start of line segment
|
||||||
|
:param x_end: right end point to indicate end of line segment
|
||||||
|
:param steps: an accuracy gauge; more steps increases the accuracy
|
||||||
|
:return: a float representing the length of the curve
|
||||||
|
|
||||||
|
>>> def f(x):
|
||||||
|
... return 5
|
||||||
|
>>> f"{trapezoidal_area(f, 12.0, 14.0, 1000):.3f}"
|
||||||
|
'10.000'
|
||||||
|
>>> def f(x):
|
||||||
|
... return 9*x**2
|
||||||
|
>>> f"{trapezoidal_area(f, -4.0, 0, 10000):.4f}"
|
||||||
|
'192.0000'
|
||||||
|
>>> f"{trapezoidal_area(f, -4.0, 4.0, 10000):.4f}"
|
||||||
|
'384.0000'
|
||||||
|
"""
|
||||||
|
x1 = x_start
|
||||||
|
fx1 = fnc(x_start)
|
||||||
|
area = 0.0
|
||||||
|
for i in range(steps):
|
||||||
|
# Approximates small segments of curve as linear and solve
|
||||||
|
# for trapezoidal area
|
||||||
|
x2 = (x_end - x_start)/steps + x1
|
||||||
|
fx2 = fnc(x2)
|
||||||
|
area += abs(fx2 + fx1) * (x2 - x1)/2
|
||||||
|
# Increment step
|
||||||
|
x1 = x2
|
||||||
|
fx1 = fx2
|
||||||
|
return area
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
def f(x):
|
||||||
|
return x**3 + x**2
|
||||||
|
|
||||||
|
print("f(x) = x^3 + x^2")
|
||||||
|
print("The area between the curve, x = -5, x = 5 and the x axis is:")
|
||||||
|
i = 10
|
||||||
|
while i <= 100000:
|
||||||
|
print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}")
|
||||||
|
i*=10
|
Loading…
Reference in New Issue
Block a user