mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
Added a Monte Carlo simulation (#1723)
* Added montecarlo.py This algorithm uses a Monte Carlo simulation to estimate the value of pi. * Rename montecarlo.py to maths/montecarlo.py * Add files via upload * Delete montecarlo.py * Rename montecarlo.py to maths/montecarlo.py * Update montecarlo.py
This commit is contained in:
parent
670f952aa6
commit
32ceec550f
43
maths/montecarlo.py
Normal file
43
maths/montecarlo.py
Normal file
|
@ -0,0 +1,43 @@
|
||||||
|
"""
|
||||||
|
@author: MatteoRaso
|
||||||
|
"""
|
||||||
|
from numpy import pi, sqrt
|
||||||
|
from random import uniform
|
||||||
|
|
||||||
|
def pi_estimator(iterations: int):
|
||||||
|
"""An implementation of the Monte Carlo method used to find pi.
|
||||||
|
1. Draw a 2x2 square centred at (0,0).
|
||||||
|
2. Inscribe a circle within the square.
|
||||||
|
3. For each iteration, place a dot anywhere in the square.
|
||||||
|
3.1 Record the number of dots within the circle.
|
||||||
|
4. After all the dots are placed, divide the dots in the circle by the total.
|
||||||
|
5. Multiply this value by 4 to get your estimate of pi.
|
||||||
|
6. Print the estimated and numpy value of pi
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
circle_dots = 0
|
||||||
|
|
||||||
|
# A local function to see if a dot lands in the circle.
|
||||||
|
def circle(x: float, y: float):
|
||||||
|
distance_from_centre = sqrt((x ** 2) + (y ** 2))
|
||||||
|
# Our circle has a radius of 1, so a distance greater than 1 would land outside the circle.
|
||||||
|
return distance_from_centre <= 1
|
||||||
|
|
||||||
|
circle_dots = sum(
|
||||||
|
int(circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for i in range(iterations)
|
||||||
|
)
|
||||||
|
|
||||||
|
# The proportion of guesses that landed within the circle
|
||||||
|
proportion = circle_dots / iterations
|
||||||
|
# The ratio of the area for circle to square is pi/4.
|
||||||
|
pi_estimate = proportion * 4
|
||||||
|
print("The estimated value of pi is ", pi_estimate)
|
||||||
|
print("The numpy value of pi is ", pi)
|
||||||
|
print("The total error is ", abs(pi - pi_estimate))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user