mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Random Forest Regression Added
This commit is contained in:
parent
f0d5bc6ece
commit
349450b957
|
@ -0,0 +1,11 @@
|
|||
Position,Level,Salary
|
||||
Business Analyst,1,45000
|
||||
Junior Consultant,2,50000
|
||||
Senior Consultant,3,60000
|
||||
Manager,4,80000
|
||||
Country Manager,5,110000
|
||||
Region Manager,6,150000
|
||||
Partner,7,200000
|
||||
Senior Partner,8,300000
|
||||
C-level,9,500000
|
||||
CEO,10,1000000
|
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,41 @@
|
|||
# Random Forest Regression
|
||||
|
||||
# Importing the libraries
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
# Importing the dataset
|
||||
dataset = pd.read_csv('Position_Salaries.csv')
|
||||
X = dataset.iloc[:, 1:2].values
|
||||
y = dataset.iloc[:, 2].values
|
||||
|
||||
# Splitting the dataset into the Training set and Test set
|
||||
"""from sklearn.cross_validation import train_test_split
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"""
|
||||
|
||||
# Feature Scaling
|
||||
"""from sklearn.preprocessing import StandardScaler
|
||||
sc_X = StandardScaler()
|
||||
X_train = sc_X.fit_transform(X_train)
|
||||
X_test = sc_X.transform(X_test)
|
||||
sc_y = StandardScaler()
|
||||
y_train = sc_y.fit_transform(y_train)"""
|
||||
|
||||
# Fitting Random Forest Regression to the dataset
|
||||
from sklearn.ensemble import RandomForestRegressor
|
||||
regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)
|
||||
regressor.fit(X, y)
|
||||
|
||||
# Predicting a new result
|
||||
y_pred = regressor.predict(6.5)
|
||||
|
||||
# Visualising the Random Forest Regression results (higher resolution)
|
||||
X_grid = np.arange(min(X), max(X), 0.01)
|
||||
X_grid = X_grid.reshape((len(X_grid), 1))
|
||||
plt.scatter(X, y, color = 'red')
|
||||
plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')
|
||||
plt.title('Truth or Bluff (Random Forest Regression)')
|
||||
plt.xlabel('Position level')
|
||||
plt.ylabel('Salary')
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user