Random Forest Regression Added

This commit is contained in:
Satyam-Bhalla 2018-10-27 08:08:03 +05:30
parent f0d5bc6ece
commit 349450b957
3 changed files with 199 additions and 0 deletions

View File

@ -0,0 +1,11 @@
Position,Level,Salary
Business Analyst,1,45000
Junior Consultant,2,50000
Senior Consultant,3,60000
Manager,4,80000
Country Manager,5,110000
Region Manager,6,150000
Partner,7,200000
Senior Partner,8,300000
C-level,9,500000
CEO,10,1000000
1 Position Level Salary
2 Business Analyst 1 45000
3 Junior Consultant 2 50000
4 Senior Consultant 3 60000
5 Manager 4 80000
6 Country Manager 5 110000
7 Region Manager 6 150000
8 Partner 7 200000
9 Senior Partner 8 300000
10 C-level 9 500000
11 CEO 10 1000000

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,41 @@
# Random Forest Regression
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
# Splitting the dataset into the Training set and Test set
"""from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"""
# Feature Scaling
"""from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)"""
# Fitting Random Forest Regression to the dataset
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)
regressor.fit(X, y)
# Predicting a new result
y_pred = regressor.predict(6.5)
# Visualising the Random Forest Regression results (higher resolution)
X_grid = np.arange(min(X), max(X), 0.01)
X_grid = X_grid.reshape((len(X_grid), 1))
plt.scatter(X, y, color = 'red')
plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')
plt.title('Truth or Bluff (Random Forest Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()