add canny edge detection algorithm and modify sobel_filter (#991)

* add gaussian filter algorithm and lena.jpg

* add img_convolve algorithm and sobel_filter

* add canny edge detection algorithm and modify sobel_filter

* format to avoid the backslashes
This commit is contained in:
Shoujue Xu 2019-07-10 22:41:05 +08:00 committed by John Law
parent add1aef064
commit 34dee749a7
3 changed files with 122 additions and 8 deletions

View File

@ -0,0 +1,107 @@
import cv2
import numpy as np
from digital_image_processing.filters.convolve import img_convolve
from digital_image_processing.filters.sobel_filter import sobel_filter
PI = 180
def gen_gaussian_kernel(k_size, sigma):
center = k_size // 2
x, y = np.mgrid[0 - center:k_size - center, 0 - center:k_size - center]
g = 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma)))
return g
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
image_row, image_col = image.shape[0], image.shape[1]
# gaussian_filter
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
# get the gradient and degree by sobel_filter
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
gradient_direction = np.rad2deg(sobel_theta)
gradient_direction += PI
dst = np.zeros((image_row, image_col))
"""
Non-maximum suppression. If the edge strength of the current pixel is the largest compared to the other pixels
in the mask with the same direction, the value will be preserved. Otherwise, the value will be suppressed.
"""
for row in range(1, image_row - 1):
for col in range(1, image_col - 1):
direction = gradient_direction[row, col]
if (
0 <= direction < 22.5
or 15 * PI / 8 <= direction <= 2 * PI
or 7 * PI / 8 <= direction <= 9 * PI / 8
):
W = sobel_grad[row, col - 1]
E = sobel_grad[row, col + 1]
if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E:
dst[row, col] = sobel_grad[row, col]
elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8):
SW = sobel_grad[row + 1, col - 1]
NE = sobel_grad[row - 1, col + 1]
if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE:
dst[row, col] = sobel_grad[row, col]
elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8):
N = sobel_grad[row - 1, col]
S = sobel_grad[row + 1, col]
if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S:
dst[row, col] = sobel_grad[row, col]
elif (5 * PI / 8 <= direction < 7 * PI / 8) or (13 * PI / 8 <= direction < 15 * PI / 8):
NW = sobel_grad[row - 1, col - 1]
SE = sobel_grad[row + 1, col + 1]
if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE:
dst[row, col] = sobel_grad[row, col]
"""
High-Low threshold detection. If an edge pixels gradient value is higher than the high threshold
value, it is marked as a strong edge pixel. If an edge pixels gradient value is smaller than the high
threshold value and larger than the low threshold value, it is marked as a weak edge pixel. If an edge
pixel's value is smaller than the low threshold value, it will be suppressed.
"""
if dst[row, col] >= threshold_high:
dst[row, col] = strong
elif dst[row, col] <= threshold_low:
dst[row, col] = 0
else:
dst[row, col] = weak
"""
Edge tracking. Usually a weak edge pixel caused from true edges will be connected to a strong edge pixel while
noise responses are unconnected. As long as there is one strong edge pixel that is involved in its 8-connected
neighborhood, that weak edge point can be identified as one that should be preserved.
"""
for row in range(1, image_row):
for col in range(1, image_col):
if dst[row, col] == weak:
if 255 in (
dst[row, col + 1],
dst[row, col - 1],
dst[row - 1, col],
dst[row + 1, col],
dst[row - 1, col - 1],
dst[row + 1, col - 1],
dst[row - 1, col + 1],
dst[row + 1, col + 1],
):
dst[row, col] = strong
else:
dst[row, col] = 0
return dst
if __name__ == '__main__':
# read original image in gray mode
lena = cv2.imread(r'../image_data/lena.jpg', 0)
# canny edge detection
canny_dst = canny(lena)
cv2.imshow('canny', canny_dst)
cv2.waitKey(0)

View File

@ -10,11 +10,18 @@ def sobel_filter(image):
kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
dst_x = img_convolve(image, kernel_x)
dst_y = img_convolve(image, kernel_y)
dst = np.sqrt((np.square(dst_x)) + (np.square(dst_y))).astype(np.uint8)
degree = np.arctan2(dst_y, dst_x)
return dst, degree
dst_x = np.abs(img_convolve(image, kernel_x))
dst_y = np.abs(img_convolve(image, kernel_y))
# modify the pix within [0, 255]
dst_x = dst_x * 255/np.max(dst_x)
dst_y = dst_y * 255/np.max(dst_y)
dst_xy = np.sqrt((np.square(dst_x)) + (np.square(dst_y)))
dst_xy = dst_xy * 255/np.max(dst_xy)
dst = dst_xy.astype(np.uint8)
theta = np.arctan2(dst_y, dst_x)
return dst, theta
if __name__ == '__main__':
@ -23,9 +30,9 @@ if __name__ == '__main__':
# turn image in gray scale value
gray = cvtColor(img, COLOR_BGR2GRAY)
sobel, d = sobel_filter(gray)
sobel_grad, sobel_theta = sobel_filter(gray)
# show result images
imshow('sobel filter', sobel)
imshow('sobel degree', d)
imshow('sobel filter', sobel_grad)
imshow('sobel theta', sobel_theta)
waitKey(0)