mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 01:00:15 +00:00
add canny edge detection algorithm and modify sobel_filter (#991)
* add gaussian filter algorithm and lena.jpg * add img_convolve algorithm and sobel_filter * add canny edge detection algorithm and modify sobel_filter * format to avoid the backslashes
This commit is contained in:
parent
add1aef064
commit
34dee749a7
0
digital_image_processing/edge_detection/__init__.py
Normal file
0
digital_image_processing/edge_detection/__init__.py
Normal file
107
digital_image_processing/edge_detection/canny.py
Normal file
107
digital_image_processing/edge_detection/canny.py
Normal file
|
@ -0,0 +1,107 @@
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
from digital_image_processing.filters.convolve import img_convolve
|
||||||
|
from digital_image_processing.filters.sobel_filter import sobel_filter
|
||||||
|
|
||||||
|
PI = 180
|
||||||
|
|
||||||
|
|
||||||
|
def gen_gaussian_kernel(k_size, sigma):
|
||||||
|
center = k_size // 2
|
||||||
|
x, y = np.mgrid[0 - center:k_size - center, 0 - center:k_size - center]
|
||||||
|
g = 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma)))
|
||||||
|
return g
|
||||||
|
|
||||||
|
|
||||||
|
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
|
||||||
|
image_row, image_col = image.shape[0], image.shape[1]
|
||||||
|
# gaussian_filter
|
||||||
|
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
|
||||||
|
# get the gradient and degree by sobel_filter
|
||||||
|
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
|
||||||
|
gradient_direction = np.rad2deg(sobel_theta)
|
||||||
|
gradient_direction += PI
|
||||||
|
|
||||||
|
dst = np.zeros((image_row, image_col))
|
||||||
|
|
||||||
|
"""
|
||||||
|
Non-maximum suppression. If the edge strength of the current pixel is the largest compared to the other pixels
|
||||||
|
in the mask with the same direction, the value will be preserved. Otherwise, the value will be suppressed.
|
||||||
|
"""
|
||||||
|
for row in range(1, image_row - 1):
|
||||||
|
for col in range(1, image_col - 1):
|
||||||
|
direction = gradient_direction[row, col]
|
||||||
|
|
||||||
|
if (
|
||||||
|
0 <= direction < 22.5
|
||||||
|
or 15 * PI / 8 <= direction <= 2 * PI
|
||||||
|
or 7 * PI / 8 <= direction <= 9 * PI / 8
|
||||||
|
):
|
||||||
|
W = sobel_grad[row, col - 1]
|
||||||
|
E = sobel_grad[row, col + 1]
|
||||||
|
if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E:
|
||||||
|
dst[row, col] = sobel_grad[row, col]
|
||||||
|
|
||||||
|
elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8):
|
||||||
|
SW = sobel_grad[row + 1, col - 1]
|
||||||
|
NE = sobel_grad[row - 1, col + 1]
|
||||||
|
if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE:
|
||||||
|
dst[row, col] = sobel_grad[row, col]
|
||||||
|
|
||||||
|
elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8):
|
||||||
|
N = sobel_grad[row - 1, col]
|
||||||
|
S = sobel_grad[row + 1, col]
|
||||||
|
if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S:
|
||||||
|
dst[row, col] = sobel_grad[row, col]
|
||||||
|
|
||||||
|
elif (5 * PI / 8 <= direction < 7 * PI / 8) or (13 * PI / 8 <= direction < 15 * PI / 8):
|
||||||
|
NW = sobel_grad[row - 1, col - 1]
|
||||||
|
SE = sobel_grad[row + 1, col + 1]
|
||||||
|
if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE:
|
||||||
|
dst[row, col] = sobel_grad[row, col]
|
||||||
|
|
||||||
|
"""
|
||||||
|
High-Low threshold detection. If an edge pixel’s gradient value is higher than the high threshold
|
||||||
|
value, it is marked as a strong edge pixel. If an edge pixel’s gradient value is smaller than the high
|
||||||
|
threshold value and larger than the low threshold value, it is marked as a weak edge pixel. If an edge
|
||||||
|
pixel's value is smaller than the low threshold value, it will be suppressed.
|
||||||
|
"""
|
||||||
|
if dst[row, col] >= threshold_high:
|
||||||
|
dst[row, col] = strong
|
||||||
|
elif dst[row, col] <= threshold_low:
|
||||||
|
dst[row, col] = 0
|
||||||
|
else:
|
||||||
|
dst[row, col] = weak
|
||||||
|
|
||||||
|
"""
|
||||||
|
Edge tracking. Usually a weak edge pixel caused from true edges will be connected to a strong edge pixel while
|
||||||
|
noise responses are unconnected. As long as there is one strong edge pixel that is involved in its 8-connected
|
||||||
|
neighborhood, that weak edge point can be identified as one that should be preserved.
|
||||||
|
"""
|
||||||
|
for row in range(1, image_row):
|
||||||
|
for col in range(1, image_col):
|
||||||
|
if dst[row, col] == weak:
|
||||||
|
if 255 in (
|
||||||
|
dst[row, col + 1],
|
||||||
|
dst[row, col - 1],
|
||||||
|
dst[row - 1, col],
|
||||||
|
dst[row + 1, col],
|
||||||
|
dst[row - 1, col - 1],
|
||||||
|
dst[row + 1, col - 1],
|
||||||
|
dst[row - 1, col + 1],
|
||||||
|
dst[row + 1, col + 1],
|
||||||
|
):
|
||||||
|
dst[row, col] = strong
|
||||||
|
else:
|
||||||
|
dst[row, col] = 0
|
||||||
|
|
||||||
|
return dst
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# read original image in gray mode
|
||||||
|
lena = cv2.imread(r'../image_data/lena.jpg', 0)
|
||||||
|
# canny edge detection
|
||||||
|
canny_dst = canny(lena)
|
||||||
|
cv2.imshow('canny', canny_dst)
|
||||||
|
cv2.waitKey(0)
|
|
@ -10,11 +10,18 @@ def sobel_filter(image):
|
||||||
kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
|
kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
|
||||||
kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
|
kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
|
||||||
|
|
||||||
dst_x = img_convolve(image, kernel_x)
|
dst_x = np.abs(img_convolve(image, kernel_x))
|
||||||
dst_y = img_convolve(image, kernel_y)
|
dst_y = np.abs(img_convolve(image, kernel_y))
|
||||||
dst = np.sqrt((np.square(dst_x)) + (np.square(dst_y))).astype(np.uint8)
|
# modify the pix within [0, 255]
|
||||||
degree = np.arctan2(dst_y, dst_x)
|
dst_x = dst_x * 255/np.max(dst_x)
|
||||||
return dst, degree
|
dst_y = dst_y * 255/np.max(dst_y)
|
||||||
|
|
||||||
|
dst_xy = np.sqrt((np.square(dst_x)) + (np.square(dst_y)))
|
||||||
|
dst_xy = dst_xy * 255/np.max(dst_xy)
|
||||||
|
dst = dst_xy.astype(np.uint8)
|
||||||
|
|
||||||
|
theta = np.arctan2(dst_y, dst_x)
|
||||||
|
return dst, theta
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
@ -23,9 +30,9 @@ if __name__ == '__main__':
|
||||||
# turn image in gray scale value
|
# turn image in gray scale value
|
||||||
gray = cvtColor(img, COLOR_BGR2GRAY)
|
gray = cvtColor(img, COLOR_BGR2GRAY)
|
||||||
|
|
||||||
sobel, d = sobel_filter(gray)
|
sobel_grad, sobel_theta = sobel_filter(gray)
|
||||||
|
|
||||||
# show result images
|
# show result images
|
||||||
imshow('sobel filter', sobel)
|
imshow('sobel filter', sobel_grad)
|
||||||
imshow('sobel degree', d)
|
imshow('sobel theta', sobel_theta)
|
||||||
waitKey(0)
|
waitKey(0)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user