mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
Tabu Search
This commit is contained in:
parent
f51020780c
commit
35110b6e44
10
searches/tabuTestData.txt
Normal file
10
searches/tabuTestData.txt
Normal file
|
@ -0,0 +1,10 @@
|
|||
a b 20
|
||||
a c 18
|
||||
a d 22
|
||||
a e 26
|
||||
b c 10
|
||||
b d 11
|
||||
b e 12
|
||||
c d 23
|
||||
c e 24
|
||||
d e 40
|
313
searches/tabu_search.py
Normal file
313
searches/tabu_search.py
Normal file
|
@ -0,0 +1,313 @@
|
|||
"""
|
||||
This is pure python implementation of Tabu search algorithm for a Travelling Salesman Problem, that the distances
|
||||
between the cities are symmetric (the distance between city 'a' and city 'b' is the same between city 'b' and city 'a').
|
||||
The TSP can be represented into a graph. The cities are represented by nodes and the distance between them is
|
||||
represented by the weight of the ark between the nodes.
|
||||
|
||||
The .txt file with the graph has the form:
|
||||
|
||||
node1 node2 distance_between_node1_and_node2
|
||||
node1 node3 distance_between_node1_and_node3
|
||||
...
|
||||
|
||||
Be careful node1, node2 and the distance between them, must exist only once. This means in the .txt file
|
||||
should not exist:
|
||||
node1 node2 distance_between_node1_and_node2
|
||||
node2 node1 distance_between_node2_and_node1
|
||||
|
||||
For pytests run following command:
|
||||
pytest
|
||||
|
||||
For manual testing run:
|
||||
python tabu_search.py -f your_file_name.txt -number_of_iterations_of_tabu_search -s size_of_tabu_search
|
||||
e.g. python tabu_search.py -f tabudata2.txt -i 4 -s 3
|
||||
"""
|
||||
|
||||
import copy
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
|
||||
def generate_neighbours(path):
|
||||
"""
|
||||
Pure implementation of generating a dictionary of neighbors and the cost with each
|
||||
neighbor, given a path file that includes a graph.
|
||||
|
||||
:param path: The path to the .txt file that includes the graph (e.g.tabudata2.txt)
|
||||
:return dict_of_neighbours: Dictionary with key each node and value a list of lists with the neighbors of the node
|
||||
and the cost (distance) for each neighbor.
|
||||
|
||||
Example of dict_of_neighbours:
|
||||
>>> dict_of_neighbours[a]
|
||||
[[b,20],[c,18],[d,22],[e,26]]
|
||||
|
||||
This indicates the neighbors of node (city) 'a', which has neighbor the node 'b' with distance 20,
|
||||
the node 'c' with distance 18, the node 'd' with distance 22 and the node 'e' with distance 26.
|
||||
|
||||
"""
|
||||
f = open(path, "r")
|
||||
|
||||
dict_of_neighbours = {}
|
||||
|
||||
for line in f:
|
||||
if line.split()[0] not in dict_of_neighbours:
|
||||
_list = list()
|
||||
_list.append([line.split()[1], line.split()[2]])
|
||||
dict_of_neighbours[line.split()[0]] = _list
|
||||
else:
|
||||
dict_of_neighbours[line.split()[0]].append([line.split()[1], line.split()[2]])
|
||||
if line.split()[1] not in dict_of_neighbours:
|
||||
_list = list()
|
||||
_list.append([line.split()[0], line.split()[2]])
|
||||
dict_of_neighbours[line.split()[1]] = _list
|
||||
else:
|
||||
dict_of_neighbours[line.split()[1]].append([line.split()[0], line.split()[2]])
|
||||
f.close()
|
||||
|
||||
return dict_of_neighbours
|
||||
|
||||
|
||||
def generate_first_solution(path, dict_of_neighbours):
|
||||
"""
|
||||
Pure implementation of generating the first solution for the Tabu search to start, with the redundant resolution
|
||||
strategy. That means that we start from the starting node (e.g. node 'a'), then we go to the city nearest (lowest
|
||||
distance) to this node (let's assume is node 'c'), then we go to the nearest city of the node 'c', etc
|
||||
till we have visited all cities and return to the starting node.
|
||||
|
||||
:param path: The path to the .txt file that includes the graph (e.g.tabudata2.txt)
|
||||
:param dict_of_neighbours: Dictionary with key each node and value a list of lists with the neighbors of the node
|
||||
and the cost (distance) for each neighbor.
|
||||
:return first_solution: The solution for the first iteration of Tabu search using the redundant resolution strategy
|
||||
in a list.
|
||||
:return distance_of_first_solution: The total distance that Travelling Salesman will travel, if he follows the path
|
||||
in first_solution.
|
||||
|
||||
"""
|
||||
|
||||
f = open(path, "r")
|
||||
start_node = f.read(1)
|
||||
end_node = start_node
|
||||
|
||||
first_solution = []
|
||||
|
||||
visiting = start_node
|
||||
|
||||
distance_of_first_solution = 0
|
||||
f.close()
|
||||
while visiting not in first_solution:
|
||||
minim = 10000
|
||||
for k in dict_of_neighbours[visiting]:
|
||||
if int(k[1]) < int(minim) and k[0] not in first_solution:
|
||||
minim = k[1]
|
||||
best_node = k[0]
|
||||
|
||||
first_solution.append(visiting)
|
||||
distance_of_first_solution = distance_of_first_solution + int(minim)
|
||||
visiting = best_node
|
||||
|
||||
first_solution.append(end_node)
|
||||
|
||||
position = 0
|
||||
for k in dict_of_neighbours[first_solution[-2]]:
|
||||
if k[0] == start_node:
|
||||
break
|
||||
position += 1
|
||||
|
||||
distance_of_first_solution = distance_of_first_solution + int(
|
||||
dict_of_neighbours[first_solution[-2]][position][1]) - 10000
|
||||
return first_solution, distance_of_first_solution
|
||||
|
||||
|
||||
def find_neighborhood(solution, dict_of_neighbours):
|
||||
"""
|
||||
Pure implementation of generating the neighborhood (sorted by total distance of each solution from
|
||||
lowest to highest) of a solution with 1-1 exchange method, that means we exchange each node in a solution with each
|
||||
other node and generating a number of solution named neighborhood.
|
||||
|
||||
:param solution: The solution in which we want to find the neighborhood.
|
||||
:param dict_of_neighbours: Dictionary with key each node and value a list of lists with the neighbors of the node
|
||||
and the cost (distance) for each neighbor.
|
||||
:return neighborhood_of_solution: A list that includes the solutions and the total distance of each solution
|
||||
(in form of list) that are produced with 1-1 exchange from the solution that the method took as an input
|
||||
|
||||
|
||||
Example:
|
||||
>>> find_neighborhood(['a','c','b','d','e','a'])
|
||||
[['a','e','b','d','c','a',90], [['a','c','d','b','e','a',90],['a','d','b','c','e','a',93],
|
||||
['a','c','b','e','d','a',102], ['a','c','e','d','b','a',113], ['a','b','c','d','e','a',93]]
|
||||
|
||||
"""
|
||||
|
||||
neighborhood_of_solution = []
|
||||
|
||||
for n in solution[1:-1]:
|
||||
idx1 = solution.index(n)
|
||||
for kn in solution[1:-1]:
|
||||
idx2 = solution.index(kn)
|
||||
if n == kn:
|
||||
continue
|
||||
|
||||
_tmp = copy.deepcopy(solution)
|
||||
_tmp[idx1] = kn
|
||||
_tmp[idx2] = n
|
||||
|
||||
distance = 0
|
||||
|
||||
for k in _tmp[:-1]:
|
||||
next_node = _tmp[_tmp.index(k) + 1]
|
||||
for i in dict_of_neighbours[k]:
|
||||
if i[0] == next_node:
|
||||
distance = distance + int(i[1])
|
||||
_tmp.append(distance)
|
||||
|
||||
if _tmp not in neighborhood_of_solution:
|
||||
neighborhood_of_solution.append(_tmp)
|
||||
|
||||
indexOfLastItemInTheList = len(neighborhood_of_solution[0]) - 1
|
||||
|
||||
neighborhood_of_solution.sort(key=lambda x: x[indexOfLastItemInTheList])
|
||||
return neighborhood_of_solution
|
||||
|
||||
|
||||
def tabu_search(first_solution, distance_of_first_solution, dict_of_neighbours, iters, size):
|
||||
"""
|
||||
Pure implementation of Tabu search algorithm for a Travelling Salesman Problem in Python.
|
||||
|
||||
:param first_solution: The solution for the first iteration of Tabu search using the redundant resolution strategy
|
||||
in a list.
|
||||
:param distance_of_first_solution: The total distance that Travelling Salesman will travel, if he follows the path
|
||||
in first_solution.
|
||||
:param dict_of_neighbours: Dictionary with key each node and value a list of lists with the neighbors of the node
|
||||
and the cost (distance) for each neighbor.
|
||||
:param iters: The number of iterations that Tabu search will execute.
|
||||
:param size: The size of Tabu List.
|
||||
:return best_solution_ever: The solution with the lowest distance that occured during the execution of Tabu search.
|
||||
:return best_cost: The total distance that Travelling Salesman will travel, if he follows the path in best_solution
|
||||
ever.
|
||||
|
||||
"""
|
||||
count = 1
|
||||
solution = first_solution
|
||||
tabu_list = list()
|
||||
best_cost = distance_of_first_solution
|
||||
best_solution_ever = solution
|
||||
|
||||
while count <= iters:
|
||||
neighborhood = find_neighborhood(solution, dict_of_neighbours)
|
||||
index_of_best_solution = 0
|
||||
best_solution = neighborhood[index_of_best_solution]
|
||||
best_cost_index = len(best_solution) - 1
|
||||
|
||||
found = False
|
||||
while found is False:
|
||||
i = 0
|
||||
while i < len(best_solution):
|
||||
|
||||
if best_solution[i] != solution[i]:
|
||||
first_exchange_node = best_solution[i]
|
||||
second_exchange_node = solution[i]
|
||||
break
|
||||
i = i + 1
|
||||
|
||||
if [first_exchange_node, second_exchange_node] not in tabu_list and [second_exchange_node,
|
||||
first_exchange_node] not in tabu_list:
|
||||
tabu_list.append([first_exchange_node, second_exchange_node])
|
||||
found = True
|
||||
solution = best_solution[:-1]
|
||||
cost = neighborhood[index_of_best_solution][best_cost_index]
|
||||
if cost < best_cost:
|
||||
best_cost = cost
|
||||
best_solution_ever = solution
|
||||
else:
|
||||
index_of_best_solution = index_of_best_solution + 1
|
||||
best_solution = neighborhood[index_of_best_solution]
|
||||
|
||||
if len(tabu_list) >= size:
|
||||
tabu_list.pop(0)
|
||||
|
||||
count = count + 1
|
||||
|
||||
return best_solution_ever, best_cost
|
||||
|
||||
|
||||
def main(args=None):
|
||||
dict_of_neighbours = generate_neighbours(args.File)
|
||||
|
||||
first_solution, distance_of_first_solution = generate_first_solution(args.File, dict_of_neighbours)
|
||||
|
||||
best_sol, best_cost = tabu_search(first_solution, distance_of_first_solution, dict_of_neighbours, args.Iterations,
|
||||
args.Size)
|
||||
|
||||
print("Best solution: {0}, with total distance: {1}.".format(best_sol, best_cost))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Tabu Search")
|
||||
parser.add_argument(
|
||||
"-f", "--File", type=str, help="Path to the file containing the data", required=True)
|
||||
parser.add_argument(
|
||||
"-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True)
|
||||
parser.add_argument(
|
||||
"-s", "--Size", type=int, help="Size of the tabu list", required=True)
|
||||
|
||||
# Pass the arguments to main method
|
||||
sys.exit(main(parser.parse_args()))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
46
searches/test_tabu_search.py
Normal file
46
searches/test_tabu_search.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
import unittest
|
||||
import os
|
||||
from tabu_search import generate_neighbours, generate_first_solution, find_neighborhood, tabu_search
|
||||
|
||||
TEST_FILE = os.path.join(os.path.dirname(__file__), './tabuTestData.txt')
|
||||
|
||||
NEIGHBOURS_DICT = {'a': [['b', '20'], ['c', '18'], ['d', '22'], ['e', '26']],
|
||||
'c': [['a', '18'], ['b', '10'], ['d', '23'], ['e', '24']],
|
||||
'b': [['a', '20'], ['c', '10'], ['d', '11'], ['e', '12']],
|
||||
'e': [['a', '26'], ['b', '12'], ['c', '24'], ['d', '40']],
|
||||
'd': [['a', '22'], ['b', '11'], ['c', '23'], ['e', '40']]}
|
||||
|
||||
FIRST_SOLUTION = ['a', 'c', 'b', 'd', 'e', 'a']
|
||||
|
||||
DISTANCE = 105
|
||||
|
||||
NEIGHBOURHOOD_OF_SOLUTIONS = [['a', 'e', 'b', 'd', 'c', 'a', 90],
|
||||
['a', 'c', 'd', 'b', 'e', 'a', 90],
|
||||
['a', 'd', 'b', 'c', 'e', 'a', 93],
|
||||
['a', 'c', 'b', 'e', 'd', 'a', 102],
|
||||
['a', 'c', 'e', 'd', 'b', 'a', 113],
|
||||
['a', 'b', 'c', 'd', 'e', 'a', 119]]
|
||||
|
||||
|
||||
class TestClass(unittest.TestCase):
|
||||
def test_generate_neighbours(self):
|
||||
neighbours = generate_neighbours(TEST_FILE)
|
||||
|
||||
self.assertEquals(NEIGHBOURS_DICT, neighbours)
|
||||
|
||||
def test_generate_first_solutions(self):
|
||||
first_solution, distance = generate_first_solution(TEST_FILE, NEIGHBOURS_DICT)
|
||||
|
||||
self.assertEquals(FIRST_SOLUTION, first_solution)
|
||||
self.assertEquals(DISTANCE, distance)
|
||||
|
||||
def test_find_neighbours(self):
|
||||
neighbour_of_solutions = find_neighborhood(FIRST_SOLUTION, NEIGHBOURS_DICT)
|
||||
|
||||
self.assertEquals(NEIGHBOURHOOD_OF_SOLUTIONS, neighbour_of_solutions)
|
||||
|
||||
def test_tabu_search(self):
|
||||
best_sol, best_cost = tabu_search(FIRST_SOLUTION, DISTANCE, NEIGHBOURS_DICT, 4, 3)
|
||||
|
||||
self.assertEquals(['a', 'd', 'b', 'e', 'c', 'a'], best_sol)
|
||||
self.assertEquals(87, best_cost)
|
Loading…
Reference in New Issue
Block a user