mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Merge d448a4e7e5
into f3f32ae3ca
This commit is contained in:
commit
3791e1954a
89
strings/min_window_substring.py
Normal file
89
strings/min_window_substring.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
def min_window(search_str: str, target_letters: str) -> str:
|
||||
"""
|
||||
Given a string to search, and another string of target char_dict,
|
||||
return the smallest substring of the search string that contains
|
||||
all target char_dict.
|
||||
|
||||
This is somewhat modified from my solution to the problem
|
||||
"Minimum Window Substring" on leetcode.
|
||||
https://leetcode.com/problems/minimum-window-substring/description/
|
||||
|
||||
>>> min_window("Hello World", "lWl")
|
||||
'llo W'
|
||||
>>> min_window("Hello World", "f")
|
||||
''
|
||||
|
||||
This solution uses a sliding window, alternating between shifting
|
||||
the end of the window right until all target char_dict are contained
|
||||
in the window, and shifting the start of the window right until the
|
||||
window no longer contains every target character.
|
||||
|
||||
Time complexity: O(target_count + search_len) ->
|
||||
The algorithm checks a dictionary at most twice for each character
|
||||
in search_str.
|
||||
|
||||
Space complexity: O(search_len) ->
|
||||
The primary contributor to additional space is the building of a
|
||||
dictionary using the search string.
|
||||
"""
|
||||
|
||||
target_count = len(target_letters)
|
||||
search_len = len(search_str)
|
||||
|
||||
# Return if not possible due to string lengths.
|
||||
if search_len < target_count:
|
||||
return ""
|
||||
|
||||
# Build dictionary with counts for each letter in target_letters
|
||||
char_dict = {}
|
||||
for ch in target_letters:
|
||||
if ch not in char_dict:
|
||||
char_dict[ch] = 1
|
||||
else:
|
||||
char_dict[ch] += 1
|
||||
|
||||
# Initialize window
|
||||
window_start = 0
|
||||
window_end = 0
|
||||
|
||||
exists = False
|
||||
min_window_len = search_len + 1
|
||||
|
||||
# Start sliding window algorithm
|
||||
while window_end < search_len:
|
||||
# Slide window end right until all search characters are contained
|
||||
while target_count > 0 and window_end < search_len:
|
||||
cur = search_str[window_end]
|
||||
if cur in char_dict:
|
||||
char_dict[cur] -= 1
|
||||
if char_dict[cur] >= 0:
|
||||
target_count -= 1
|
||||
window_end += 1
|
||||
temp = window_end - window_start
|
||||
|
||||
# Check if window is the smallest found so far
|
||||
if target_count == 0 and temp < min_window_len:
|
||||
min_window = [window_start, window_end]
|
||||
exists = True
|
||||
min_window_len = temp
|
||||
|
||||
# Slide window start right until a search character exits the window
|
||||
while target_count == 0 and window_start < window_end:
|
||||
cur = search_str[window_start]
|
||||
window_start += 1
|
||||
if cur in char_dict:
|
||||
char_dict[cur] += 1
|
||||
if char_dict[cur] > 0:
|
||||
break
|
||||
temp = window_end - window_start + 1
|
||||
|
||||
# Check if window is the smallest found so far
|
||||
if temp < min_window_len and target_count == 0:
|
||||
min_window = [window_start - 1, window_end]
|
||||
min_window_len = temp
|
||||
target_count = 1
|
||||
|
||||
if exists:
|
||||
return search_str[min_window[0] : min_window[1]]
|
||||
else:
|
||||
return ""
|
Loading…
Reference in New Issue
Block a user