mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Updated test cases of power_sum.py (#9978)
* Updated test cases of power_sum.py * updated * updated. * remove extra comment and used ** instead of pow * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update backtracking/power_sum.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
0b2c9fb6f1
commit
37cae3f561
|
@ -6,8 +6,6 @@ We have to find all combinations of unique squares adding up to 13.
|
||||||
The only solution is 2^2+3^2. Constraints: 1<=X<=1000, 2<=N<=10.
|
The only solution is 2^2+3^2. Constraints: 1<=X<=1000, 2<=N<=10.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from math import pow
|
|
||||||
|
|
||||||
|
|
||||||
def backtrack(
|
def backtrack(
|
||||||
needed_sum: int,
|
needed_sum: int,
|
||||||
|
@ -19,25 +17,25 @@ def backtrack(
|
||||||
"""
|
"""
|
||||||
>>> backtrack(13, 2, 1, 0, 0)
|
>>> backtrack(13, 2, 1, 0, 0)
|
||||||
(0, 1)
|
(0, 1)
|
||||||
>>> backtrack(100, 2, 1, 0, 0)
|
>>> backtrack(10, 2, 1, 0, 0)
|
||||||
(0, 3)
|
|
||||||
>>> backtrack(100, 3, 1, 0, 0)
|
|
||||||
(0, 1)
|
(0, 1)
|
||||||
>>> backtrack(800, 2, 1, 0, 0)
|
>>> backtrack(10, 3, 1, 0, 0)
|
||||||
(0, 561)
|
|
||||||
>>> backtrack(1000, 10, 1, 0, 0)
|
|
||||||
(0, 0)
|
(0, 0)
|
||||||
>>> backtrack(400, 2, 1, 0, 0)
|
>>> backtrack(20, 2, 1, 0, 0)
|
||||||
(0, 55)
|
(0, 1)
|
||||||
>>> backtrack(50, 1, 1, 0, 0)
|
>>> backtrack(15, 10, 1, 0, 0)
|
||||||
(0, 3658)
|
(0, 0)
|
||||||
|
>>> backtrack(16, 2, 1, 0, 0)
|
||||||
|
(0, 1)
|
||||||
|
>>> backtrack(20, 1, 1, 0, 0)
|
||||||
|
(0, 64)
|
||||||
"""
|
"""
|
||||||
if current_sum == needed_sum:
|
if current_sum == needed_sum:
|
||||||
# If the sum of the powers is equal to needed_sum, then we have a solution.
|
# If the sum of the powers is equal to needed_sum, then we have a solution.
|
||||||
solutions_count += 1
|
solutions_count += 1
|
||||||
return current_sum, solutions_count
|
return current_sum, solutions_count
|
||||||
|
|
||||||
i_to_n = int(pow(current_number, power))
|
i_to_n = current_number**power
|
||||||
if current_sum + i_to_n <= needed_sum:
|
if current_sum + i_to_n <= needed_sum:
|
||||||
# If the sum of the powers is less than needed_sum, then continue adding powers.
|
# If the sum of the powers is less than needed_sum, then continue adding powers.
|
||||||
current_sum += i_to_n
|
current_sum += i_to_n
|
||||||
|
@ -57,17 +55,17 @@ def solve(needed_sum: int, power: int) -> int:
|
||||||
"""
|
"""
|
||||||
>>> solve(13, 2)
|
>>> solve(13, 2)
|
||||||
1
|
1
|
||||||
>>> solve(100, 2)
|
>>> solve(10, 2)
|
||||||
3
|
|
||||||
>>> solve(100, 3)
|
|
||||||
1
|
1
|
||||||
>>> solve(800, 2)
|
>>> solve(10, 3)
|
||||||
561
|
|
||||||
>>> solve(1000, 10)
|
|
||||||
0
|
0
|
||||||
>>> solve(400, 2)
|
>>> solve(20, 2)
|
||||||
55
|
1
|
||||||
>>> solve(50, 1)
|
>>> solve(15, 10)
|
||||||
|
0
|
||||||
|
>>> solve(16, 2)
|
||||||
|
1
|
||||||
|
>>> solve(20, 1)
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
ValueError: Invalid input
|
ValueError: Invalid input
|
||||||
|
|
Loading…
Reference in New Issue
Block a user