hill_cipher.py: gcd() -> greatest_common_divisor() (#1997)

* hill_cipher.py: gcd() -> greatest_common_divisor()

* fixup! Format Python code with psf/black push

* import string

* updating DIRECTORY.md

* Change matrix to array

Add more tests

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
Christian Clauss 2020-05-18 13:05:51 +02:00 committed by GitHub
parent aa120cea12
commit 38d2e98665
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 53 additions and 55 deletions

View File

@ -603,6 +603,7 @@
* [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py)
* [Sleep Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/sleep_sort.py) * [Sleep Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/sleep_sort.py)
* [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py)
* [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py)
* [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py)
* [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py)
* [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py)

View File

@ -1,10 +1,9 @@
""" """
Hill Cipher: Hill Cipher:
The below defined class 'HillCipher' implements the Hill Cipher algorithm. The 'HillCipher' class below implements the Hill Cipher algorithm which uses
The Hill Cipher is an algorithm that implements modern linear algebra techniques modern linear algebra techniques to encode and decode text using an encryption
In this algorithm, you have an encryption key matrix. This is what will be used key matrix.
in encoding and decoding your text.
Algorithm: Algorithm:
Let the order of the encryption key be N (as it is a square matrix). Let the order of the encryption key be N (as it is a square matrix).
@ -24,12 +23,11 @@ Constraints:
The determinant of the encryption key matrix must be relatively prime w.r.t 36. The determinant of the encryption key matrix must be relatively prime w.r.t 36.
Note: Note:
The algorithm implemented in this code considers only alphanumerics in the text. This implementation only considers alphanumerics in the text. If the length of
If the length of the text to be encrypted is not a multiple of the the text to be encrypted is not a multiple of the break key(the length of one
break key(the length of one batch of letters),the last character of the text batch of letters), the last character of the text is added to the text until the
is added to the text until the length of the text reaches a multiple of length of the text reaches a multiple of the break_key. So the text after
the break_key. So the text after decrypting might be a little different than decrypting might be a little different than the original text.
the original text.
References: References:
https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf
@ -38,67 +36,66 @@ https://www.youtube.com/watch?v=4RhLNDqcjpA
""" """
import string
import numpy import numpy
def gcd(a: int, b: int) -> int: def greatest_common_divisor(a: int, b: int) -> int:
""" """
>>> gcd(4, 8) >>> greatest_common_divisor(4, 8)
4 4
>>> gcd(8, 4) >>> greatest_common_divisor(8, 4)
4 4
>>> gcd(4, 7) >>> greatest_common_divisor(4, 7)
1 1
>>> gcd(0, 10) >>> greatest_common_divisor(0, 10)
10 10
""" """
if a == 0: return b if a == 0 else greatest_common_divisor(b % a, a)
return b
return gcd(b % a, a)
class HillCipher: class HillCipher:
key_string = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" key_string = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account # This cipher takes alphanumerics into account
# i.e. a total of 36 characters # i.e. a total of 36 characters
# take x and return x % len(key_string) # take x and return x % len(key_string)
modulus = numpy.vectorize(lambda x: x % 36) modulus = numpy.vectorize(lambda x: x % 36)
toInt = numpy.vectorize(lambda x: round(x)) to_int = numpy.vectorize(lambda x: round(x))
def __init__(self, encrypt_key): def __init__(self, encrypt_key):
""" """
encrypt_key is an NxN numpy matrix encrypt_key is an NxN numpy array
""" """
self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key self.check_determinant() # validate the determinant of the encryption key
self.decrypt_key = None self.decrypt_key = None
self.break_key = encrypt_key.shape[0] self.break_key = encrypt_key.shape[0]
def replaceLetters(self, letter: str) -> int: def replace_letters(self, letter: str) -> int:
""" """
>>> hill_cipher = HillCipher(numpy.matrix([[2, 5], [1, 6]])) >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
>>> hill_cipher.replaceLetters('T') >>> hill_cipher.replace_letters('T')
19 19
>>> hill_cipher.replaceLetters('0') >>> hill_cipher.replace_letters('0')
26 26
""" """
return self.key_string.index(letter) return self.key_string.index(letter)
def replaceNumbers(self, num: int) -> str: def replace_digits(self, num: int) -> str:
""" """
>>> hill_cipher = HillCipher(numpy.matrix([[2, 5], [1, 6]])) >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
>>> hill_cipher.replaceNumbers(19) >>> hill_cipher.replace_digits(19)
'T' 'T'
>>> hill_cipher.replaceNumbers(26) >>> hill_cipher.replace_digits(26)
'0' '0'
""" """
return self.key_string[round(num)] return self.key_string[round(num)]
def check_determinant(self) -> None: def check_determinant(self) -> None:
""" """
>>> hill_cipher = HillCipher(numpy.matrix([[2, 5], [1, 6]])) >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
>>> hill_cipher.check_determinant() >>> hill_cipher.check_determinant()
""" """
det = round(numpy.linalg.det(self.encrypt_key)) det = round(numpy.linalg.det(self.encrypt_key))
@ -107,19 +104,20 @@ class HillCipher:
det = det % len(self.key_string) det = det % len(self.key_string)
req_l = len(self.key_string) req_l = len(self.key_string)
if gcd(det, len(self.key_string)) != 1: if greatest_common_divisor(det, len(self.key_string)) != 1:
raise ValueError( raise ValueError(
f"determinant modular {req_l} of encryption key({det}) is not co prime w.r.t {req_l}.\nTry another key." f"determinant modular {req_l} of encryption key({det}) is not co prime w.r.t {req_l}.\nTry another key."
) )
def process_text(self, text: str) -> str: def process_text(self, text: str) -> str:
""" """
>>> hill_cipher = HillCipher(numpy.matrix([[2, 5], [1, 6]])) >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
>>> hill_cipher.process_text('Testing Hill Cipher') >>> hill_cipher.process_text('Testing Hill Cipher')
'TESTINGHILLCIPHERR' 'TESTINGHILLCIPHERR'
>>> hill_cipher.process_text('hello')
'HELLOO'
""" """
text = list(text.upper()) chars = [char for char in text.upper() if char in self.key_string]
chars = [char for char in text if char in self.key_string]
last = chars[-1] last = chars[-1]
while len(chars) % self.break_key != 0: while len(chars) % self.break_key != 0:
@ -129,22 +127,24 @@ class HillCipher:
def encrypt(self, text: str) -> str: def encrypt(self, text: str) -> str:
""" """
>>> hill_cipher = HillCipher(numpy.matrix([[2, 5], [1, 6]])) >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
>>> hill_cipher.encrypt('testing hill cipher') >>> hill_cipher.encrypt('testing hill cipher')
'WHXYJOLM9C6XT085LL' 'WHXYJOLM9C6XT085LL'
>>> hill_cipher.encrypt('hello')
'85FF00'
""" """
text = self.process_text(text.upper()) text = self.process_text(text.upper())
encrypted = "" encrypted = ""
for i in range(0, len(text) - self.break_key + 1, self.break_key): for i in range(0, len(text) - self.break_key + 1, self.break_key):
batch = text[i : i + self.break_key] batch = text[i : i + self.break_key]
batch_vec = [self.replaceLetters(char) for char in batch] batch_vec = [self.replace_letters(char) for char in batch]
batch_vec = numpy.matrix([batch_vec]).T batch_vec = numpy.array([batch_vec]).T
batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[ batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[
0 0
] ]
encrypted_batch = "".join( encrypted_batch = "".join(
self.replaceNumbers(num) for num in batch_encrypted self.replace_digits(num) for num in batch_encrypted
) )
encrypted += encrypted_batch encrypted += encrypted_batch
@ -152,10 +152,10 @@ class HillCipher:
def make_decrypt_key(self): def make_decrypt_key(self):
""" """
>>> hill_cipher = HillCipher(numpy.matrix([[2, 5], [1, 6]])) >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
>>> hill_cipher.make_decrypt_key() >>> hill_cipher.make_decrypt_key()
matrix([[ 6., 25.], array([[ 6., 25.],
[ 5., 26.]]) [ 5., 26.]])
""" """
det = round(numpy.linalg.det(self.encrypt_key)) det = round(numpy.linalg.det(self.encrypt_key))
@ -173,13 +173,15 @@ class HillCipher:
* numpy.linalg.inv(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key)
) )
return self.toInt(self.modulus(inv_key)) return self.to_int(self.modulus(inv_key))
def decrypt(self, text: str) -> str: def decrypt(self, text: str) -> str:
""" """
>>> hill_cipher = HillCipher(numpy.matrix([[2, 5], [1, 6]])) >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
>>> hill_cipher.decrypt('WHXYJOLM9C6XT085LL') >>> hill_cipher.decrypt('WHXYJOLM9C6XT085LL')
'TESTINGHILLCIPHERR' 'TESTINGHILLCIPHERR'
>>> hill_cipher.decrypt('85FF00')
'HELLOO'
""" """
self.decrypt_key = self.make_decrypt_key() self.decrypt_key = self.make_decrypt_key()
text = self.process_text(text.upper()) text = self.process_text(text.upper())
@ -187,13 +189,13 @@ class HillCipher:
for i in range(0, len(text) - self.break_key + 1, self.break_key): for i in range(0, len(text) - self.break_key + 1, self.break_key):
batch = text[i : i + self.break_key] batch = text[i : i + self.break_key]
batch_vec = [self.replaceLetters(char) for char in batch] batch_vec = [self.replace_letters(char) for char in batch]
batch_vec = numpy.matrix([batch_vec]).T batch_vec = numpy.array([batch_vec]).T
batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[ batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[
0 0
] ]
decrypted_batch = "".join( decrypted_batch = "".join(
self.replaceNumbers(num) for num in batch_decrypted self.replace_digits(num) for num in batch_decrypted
) )
decrypted += decrypted_batch decrypted += decrypted_batch
@ -206,19 +208,13 @@ def main():
print("Enter each row of the encryption key with space separated integers") print("Enter each row of the encryption key with space separated integers")
for i in range(N): for i in range(N):
row = list(map(int, input().split())) row = [int(x) for x in input().split()]
hill_matrix.append(row) hill_matrix.append(row)
hc = HillCipher(numpy.matrix(hill_matrix)) hc = HillCipher(numpy.array(hill_matrix))
print("Would you like to encrypt or decrypt some text? (1 or 2)") print("Would you like to encrypt or decrypt some text? (1 or 2)")
option = input( option = input("\n1. Encrypt\n2. Decrypt\n")
"""
1. Encrypt
2. Decrypt
"""
)
if option == "1": if option == "1":
text_e = input("What text would you like to encrypt?: ") text_e = input("What text would you like to encrypt?: ")
print("Your encrypted text is:") print("Your encrypted text is:")
@ -231,6 +227,7 @@ def main():
if __name__ == "__main__": if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()
main() main()