mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Create genetic_algorithm_optimization.py
This commit is contained in:
parent
03a42510b0
commit
39be73f0b5
214
genetic_algorithm/genetic_algorithm_optimization.py
Normal file
214
genetic_algorithm/genetic_algorithm_optimization.py
Normal file
|
@ -0,0 +1,214 @@
|
||||||
|
import random
|
||||||
|
from collections.abc import Callable, Sequence
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
N_POPULATION = 100 # Population size
|
||||||
|
N_GENERATIONS = 500 # Maximum number of generations
|
||||||
|
N_SELECTED = 50 # Number of parents selected for the next generation
|
||||||
|
MUTATION_PROBABILITY = 0.1 # Mutation probability
|
||||||
|
CROSSOVER_RATE = 0.8 # Probability of crossover
|
||||||
|
SEARCH_SPACE = (-10, 10) # Search space for the variables
|
||||||
|
|
||||||
|
# Random number generator
|
||||||
|
rng = np.random.default_rng()
|
||||||
|
|
||||||
|
|
||||||
|
class GeneticAlgorithm:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
function: Callable[[float, float], float],
|
||||||
|
bounds: Sequence[tuple[int | float, int | float]],
|
||||||
|
population_size: int,
|
||||||
|
generations: int,
|
||||||
|
mutation_prob: float,
|
||||||
|
crossover_rate: float,
|
||||||
|
maximize: bool = True,
|
||||||
|
) -> None:
|
||||||
|
self.function = function # Target function to optimize
|
||||||
|
self.bounds = bounds # Search space bounds (for each variable)
|
||||||
|
self.population_size = population_size
|
||||||
|
self.generations = generations
|
||||||
|
self.mutation_prob = mutation_prob
|
||||||
|
self.crossover_rate = crossover_rate
|
||||||
|
self.maximize = maximize
|
||||||
|
self.dim = len(bounds) # Dimensionality of the function (number of variables)
|
||||||
|
|
||||||
|
# Initialize population
|
||||||
|
self.population = self.initialize_population()
|
||||||
|
|
||||||
|
def initialize_population(self) -> list[np.ndarray]:
|
||||||
|
"""Initialize the population with random individuals within the search space."""
|
||||||
|
return [
|
||||||
|
rng.uniform(
|
||||||
|
low=[self.bounds[j][0] for j in range(self.dim)],
|
||||||
|
high=[self.bounds[j][1] for j in range(self.dim)],
|
||||||
|
)
|
||||||
|
for _ in range(self.population_size)
|
||||||
|
]
|
||||||
|
|
||||||
|
def fitness(self, individual: np.ndarray) -> float:
|
||||||
|
"""Calculate the fitness value (function value) for an individual."""
|
||||||
|
value = float(self.function(*individual)) # Ensure fitness is a float
|
||||||
|
return value if self.maximize else -value # If minimizing, invert the fitness
|
||||||
|
|
||||||
|
def select_parents(
|
||||||
|
self, population_score: list[tuple[np.ndarray, float]]
|
||||||
|
) -> list[np.ndarray]:
|
||||||
|
"""Select top N_SELECTED parents based on fitness."""
|
||||||
|
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
|
||||||
|
selected_count = min(N_SELECTED, len(population_score))
|
||||||
|
return [ind for ind, _ in population_score[:selected_count]]
|
||||||
|
|
||||||
|
def crossover(
|
||||||
|
self, parent1: np.ndarray, parent2: np.ndarray
|
||||||
|
) -> tuple[np.ndarray, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Perform uniform crossover between two parents to generate offspring.
|
||||||
|
Args:
|
||||||
|
parent1 (np.ndarray): The first parent.
|
||||||
|
parent2 (np.ndarray): The second parent.
|
||||||
|
Returns:
|
||||||
|
tuple[np.ndarray, np.ndarray]: The two offspring generated by crossover.
|
||||||
|
Example:
|
||||||
|
>>> ga = GeneticAlgorithm(
|
||||||
|
... lambda x, y: -(x**2 + y**2),
|
||||||
|
... [(-10, 10), (-10, 10)],
|
||||||
|
... 10, 100, 0.1, 0.8, True
|
||||||
|
... )
|
||||||
|
>>> parent1, parent2 = np.array([1, 2]), np.array([3, 4])
|
||||||
|
>>> len(ga.crossover(parent1, parent2)) == 2
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
if random.random() < self.crossover_rate:
|
||||||
|
cross_point = random.randint(1, self.dim - 1)
|
||||||
|
child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:]))
|
||||||
|
child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:]))
|
||||||
|
return child1, child2
|
||||||
|
return parent1, parent2
|
||||||
|
|
||||||
|
def mutate(self, individual: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Apply mutation to an individual.
|
||||||
|
Args:
|
||||||
|
individual (np.ndarray): The individual to mutate.
|
||||||
|
Returns:
|
||||||
|
np.ndarray: The mutated individual.
|
||||||
|
Example:
|
||||||
|
>>> ga = GeneticAlgorithm(
|
||||||
|
... lambda x, y: -(x**2 + y**2),
|
||||||
|
... [(-10, 10), (-10, 10)],
|
||||||
|
... 10, 100, 0.1, 0.8, True
|
||||||
|
... )
|
||||||
|
>>> ind = np.array([1.0, 2.0])
|
||||||
|
>>> mutated = ga.mutate(ind)
|
||||||
|
>>> len(mutated) == 2 # Ensure it still has the correct number of dimensions
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
for i in range(self.dim):
|
||||||
|
if random.random() < self.mutation_prob:
|
||||||
|
individual[i] = rng.uniform(self.bounds[i][0], self.bounds[i][1])
|
||||||
|
return individual
|
||||||
|
|
||||||
|
def evaluate_population(self) -> list[tuple[np.ndarray, float]]:
|
||||||
|
"""
|
||||||
|
Evaluate the fitness of the entire population in parallel.
|
||||||
|
Returns:
|
||||||
|
list[tuple[np.ndarray, float]]:
|
||||||
|
The population with their respective fitness values.
|
||||||
|
Example:
|
||||||
|
>>> ga = GeneticAlgorithm(
|
||||||
|
... lambda x, y: -(x**2 + y**2),
|
||||||
|
... [(-10, 10), (-10, 10)],
|
||||||
|
... 10, 100, 0.1, 0.8, True
|
||||||
|
... )
|
||||||
|
>>> eval_population = ga.evaluate_population()
|
||||||
|
>>> len(eval_population) == ga.population_size # Ensure population size
|
||||||
|
True
|
||||||
|
>>> all(
|
||||||
|
... isinstance(ind, tuple) and isinstance(ind[1], float)
|
||||||
|
... for ind in eval_population
|
||||||
|
... )
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
with ThreadPoolExecutor() as executor:
|
||||||
|
return list(
|
||||||
|
executor.map(
|
||||||
|
lambda individual: (individual, self.fitness(individual)),
|
||||||
|
self.population,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def evolve(self, verbose=True) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Evolve the population over the generations to find the best solution.
|
||||||
|
Returns:
|
||||||
|
np.ndarray: The best individual found during the evolution process.
|
||||||
|
"""
|
||||||
|
for generation in range(self.generations):
|
||||||
|
# Evaluate population fitness (multithreaded)
|
||||||
|
population_score = self.evaluate_population()
|
||||||
|
|
||||||
|
# Check the best individual
|
||||||
|
best_individual = max(
|
||||||
|
population_score, key=lambda score_tuple: score_tuple[1]
|
||||||
|
)[0]
|
||||||
|
best_fitness = self.fitness(best_individual)
|
||||||
|
|
||||||
|
# Select parents for next generation
|
||||||
|
parents = self.select_parents(population_score)
|
||||||
|
next_generation = []
|
||||||
|
|
||||||
|
# Generate offspring using crossover and mutation
|
||||||
|
for i in range(0, len(parents), 2):
|
||||||
|
parent1, parent2 = parents[i], parents[(i + 1) % len(parents)]
|
||||||
|
child1, child2 = self.crossover(parent1, parent2)
|
||||||
|
next_generation.append(self.mutate(child1))
|
||||||
|
next_generation.append(self.mutate(child2))
|
||||||
|
|
||||||
|
# Ensure population size remains the same
|
||||||
|
self.population = next_generation[: self.population_size]
|
||||||
|
|
||||||
|
if verbose and generation % 10 == 0:
|
||||||
|
print(f"Generation {generation}: Best Fitness = {best_fitness}")
|
||||||
|
|
||||||
|
return best_individual
|
||||||
|
|
||||||
|
|
||||||
|
# Example target function for optimization
|
||||||
|
def target_function(var_x: float, var_y: float) -> float:
|
||||||
|
"""
|
||||||
|
Example target function (parabola) for optimization.
|
||||||
|
Args:
|
||||||
|
var_x (float): The x-coordinate.
|
||||||
|
var_y (float): The y-coordinate.
|
||||||
|
Returns:
|
||||||
|
float: The value of the function at (var_x, var_y).
|
||||||
|
Example:
|
||||||
|
>>> target_function(0, 0)
|
||||||
|
0
|
||||||
|
>>> target_function(1, 1)
|
||||||
|
2
|
||||||
|
"""
|
||||||
|
return var_x**2 + var_y**2 # Simple parabolic surface (minimization)
|
||||||
|
|
||||||
|
|
||||||
|
# Set bounds for the variables (var_x, var_y)
|
||||||
|
bounds = [(-10, 10), (-10, 10)] # Both var_x and var_y range from -10 to 10
|
||||||
|
|
||||||
|
# Instantiate and run the genetic algorithm
|
||||||
|
ga = GeneticAlgorithm(
|
||||||
|
function=target_function,
|
||||||
|
bounds=bounds,
|
||||||
|
population_size=N_POPULATION,
|
||||||
|
generations=N_GENERATIONS,
|
||||||
|
mutation_prob=MUTATION_PROBABILITY,
|
||||||
|
crossover_rate=CROSSOVER_RATE,
|
||||||
|
maximize=False, # Minimize the function
|
||||||
|
)
|
||||||
|
|
||||||
|
best_solution = ga.evolve()
|
||||||
|
print(f"Best solution found: {best_solution}")
|
||||||
|
print(f"Best fitness (minimum value of function): {target_function(*best_solution)}")
|
Loading…
Reference in New Issue
Block a user