mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Create a Simultaneous Equation Solver Algorithm (#8773)
* Added simultaneous_linear_equation_solver.py * Removed Augment class, replaced with recursive functions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed edge cases * Update settings.json --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
4621b0bb4f
commit
3a9e5fa5ec
5
.vscode/settings.json
vendored
Normal file
5
.vscode/settings.json
vendored
Normal file
|
@ -0,0 +1,5 @@
|
|||
{
|
||||
"githubPullRequests.ignoredPullRequestBranches": [
|
||||
"master"
|
||||
]
|
||||
}
|
142
maths/simultaneous_linear_equation_solver.py
Normal file
142
maths/simultaneous_linear_equation_solver.py
Normal file
|
@ -0,0 +1,142 @@
|
|||
"""
|
||||
https://en.wikipedia.org/wiki/Augmented_matrix
|
||||
|
||||
This algorithm solves simultaneous linear equations of the form
|
||||
λa + λb + λc + λd + ... = γ as [λ, λ, λ, λ, ..., γ]
|
||||
Where λ & γ are individual coefficients, the no. of equations = no. of coefficients - 1
|
||||
|
||||
Note in order to work there must exist 1 equation where all instances of λ and γ != 0
|
||||
"""
|
||||
|
||||
|
||||
def simplify(current_set: list[list]) -> list[list]:
|
||||
"""
|
||||
>>> simplify([[1, 2, 3], [4, 5, 6]])
|
||||
[[1.0, 2.0, 3.0], [0.0, 0.75, 1.5]]
|
||||
>>> simplify([[5, 2, 5], [5, 1, 10]])
|
||||
[[1.0, 0.4, 1.0], [0.0, 0.2, -1.0]]
|
||||
"""
|
||||
# Divide each row by magnitude of first term --> creates 'unit' matrix
|
||||
duplicate_set = current_set.copy()
|
||||
for row_index, row in enumerate(duplicate_set):
|
||||
magnitude = row[0]
|
||||
for column_index, column in enumerate(row):
|
||||
if magnitude == 0:
|
||||
current_set[row_index][column_index] = column
|
||||
continue
|
||||
current_set[row_index][column_index] = column / magnitude
|
||||
# Subtract to cancel term
|
||||
first_row = current_set[0]
|
||||
final_set = [first_row]
|
||||
current_set = current_set[1::]
|
||||
for row in current_set:
|
||||
temp_row = []
|
||||
# If first term is 0, it is already in form we want, so we preserve it
|
||||
if row[0] == 0:
|
||||
final_set.append(row)
|
||||
continue
|
||||
for column_index in range(len(row)):
|
||||
temp_row.append(first_row[column_index] - row[column_index])
|
||||
final_set.append(temp_row)
|
||||
# Create next recursion iteration set
|
||||
if len(final_set[0]) != 3:
|
||||
current_first_row = final_set[0]
|
||||
current_first_column = []
|
||||
next_iteration = []
|
||||
for row in final_set[1::]:
|
||||
current_first_column.append(row[0])
|
||||
next_iteration.append(row[1::])
|
||||
resultant = simplify(next_iteration)
|
||||
for i in range(len(resultant)):
|
||||
resultant[i].insert(0, current_first_column[i])
|
||||
resultant.insert(0, current_first_row)
|
||||
final_set = resultant
|
||||
return final_set
|
||||
|
||||
|
||||
def solve_simultaneous(equations: list[list]) -> list:
|
||||
"""
|
||||
>>> solve_simultaneous([[1, 2, 3],[4, 5, 6]])
|
||||
[-1.0, 2.0]
|
||||
>>> solve_simultaneous([[0, -3, 1, 7],[3, 2, -1, 11],[5, 1, -2, 12]])
|
||||
[6.4, 1.2, 10.6]
|
||||
>>> solve_simultaneous([])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
IndexError: solve_simultaneous() requires n lists of length n+1
|
||||
>>> solve_simultaneous([[1, 2, 3],[1, 2]])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
IndexError: solve_simultaneous() requires n lists of length n+1
|
||||
>>> solve_simultaneous([[1, 2, 3],["a", 7, 8]])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: solve_simultaneous() requires lists of integers
|
||||
>>> solve_simultaneous([[0, 2, 3],[4, 0, 6]])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: solve_simultaneous() requires at least 1 full equation
|
||||
"""
|
||||
if len(equations) == 0:
|
||||
raise IndexError("solve_simultaneous() requires n lists of length n+1")
|
||||
_length = len(equations) + 1
|
||||
if any(len(item) != _length for item in equations):
|
||||
raise IndexError("solve_simultaneous() requires n lists of length n+1")
|
||||
for row in equations:
|
||||
if any(not isinstance(column, (int, float)) for column in row):
|
||||
raise ValueError("solve_simultaneous() requires lists of integers")
|
||||
if len(equations) == 1:
|
||||
return [equations[0][-1] / equations[0][0]]
|
||||
data_set = equations.copy()
|
||||
if any(0 in row for row in data_set):
|
||||
temp_data = data_set.copy()
|
||||
full_row = []
|
||||
for row_index, row in enumerate(temp_data):
|
||||
if 0 not in row:
|
||||
full_row = data_set.pop(row_index)
|
||||
break
|
||||
if not full_row:
|
||||
raise ValueError("solve_simultaneous() requires at least 1 full equation")
|
||||
data_set.insert(0, full_row)
|
||||
useable_form = data_set.copy()
|
||||
simplified = simplify(useable_form)
|
||||
simplified = simplified[::-1]
|
||||
solutions: list = []
|
||||
for row in simplified:
|
||||
current_solution = row[-1]
|
||||
if not solutions:
|
||||
if row[-2] == 0:
|
||||
solutions.append(0)
|
||||
continue
|
||||
solutions.append(current_solution / row[-2])
|
||||
continue
|
||||
temp_row = row.copy()[: len(row) - 1 :]
|
||||
while temp_row[0] == 0:
|
||||
temp_row.pop(0)
|
||||
if len(temp_row) == 0:
|
||||
solutions.append(0)
|
||||
continue
|
||||
temp_row = temp_row[1::]
|
||||
temp_row = temp_row[::-1]
|
||||
for column_index, column in enumerate(temp_row):
|
||||
current_solution -= column * solutions[column_index]
|
||||
solutions.append(current_solution)
|
||||
final = []
|
||||
for item in solutions:
|
||||
final.append(float(round(item, 5)))
|
||||
return final[::-1]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
eq = [
|
||||
[2, 1, 1, 1, 1, 4],
|
||||
[1, 2, 1, 1, 1, 5],
|
||||
[1, 1, 2, 1, 1, 6],
|
||||
[1, 1, 1, 2, 1, 7],
|
||||
[1, 1, 1, 1, 2, 8],
|
||||
]
|
||||
print(solve_simultaneous(eq))
|
||||
print(solve_simultaneous([[4, 2]]))
|
Loading…
Reference in New Issue
Block a user