mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-30 22:23:42 +00:00
Add files via upload
This commit is contained in:
parent
041571772e
commit
3b8848430c
|
@ -1,8 +1,8 @@
|
|||
"""
|
||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
Name - - sliding_window_attention.py
|
||||
Goal - - Implement a neural network architecture using sliding window attention for sequence
|
||||
modeling tasks.
|
||||
Goal - - Implement a neural network architecture using sliding
|
||||
window attention for sequence modeling tasks.
|
||||
Detail: Total 5 layers neural network
|
||||
* Input layer
|
||||
* Sliding Window Attention Layer
|
||||
|
@ -12,10 +12,12 @@ Author: Stephen Lee
|
|||
Github: 245885195@qq.com
|
||||
Date: 2024.10.20
|
||||
References:
|
||||
1. Choromanska, A., et al. (2020). "On the Importance of Initialization and Momentum in
|
||||
Deep Learning." *Proceedings of the 37th International Conference on Machine Learning*.
|
||||
2. Dai, Z., et al. (2020). "Transformers are RNNs: Fast Autoregressive Transformers
|
||||
with Linear Attention." *arXiv preprint arXiv:2006.16236*.
|
||||
1. Choromanska, A., et al. (2020). "On the Importance of
|
||||
Initialization and Momentum in Deep Learning." *Proceedings
|
||||
of the 37th International Conference on Machine Learning*.
|
||||
2. Dai, Z., et al. (2020). "Transformers are RNNs: Fast
|
||||
Autoregressive Transformers with Linear Attention."
|
||||
*arXiv preprint arXiv:2006.16236*.
|
||||
3. [Attention Mechanisms in Neural Networks](https://en.wikipedia.org/wiki/Attention_(machine_learning))
|
||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
"""
|
||||
|
@ -26,8 +28,8 @@ import numpy as np
|
|||
class SlidingWindowAttention:
|
||||
"""Sliding Window Attention Module.
|
||||
|
||||
This class implements a sliding window attention mechanism where the model
|
||||
attends to a fixed-size window of context around each token.
|
||||
This class implements a sliding window attention mechanism where
|
||||
the model attends to a fixed-size window of context around each token.
|
||||
|
||||
Attributes:
|
||||
window_size (int): The size of the attention window.
|
||||
|
@ -52,13 +54,13 @@ class SlidingWindowAttention:
|
|||
Forward pass for the sliding window attention.
|
||||
|
||||
Args:
|
||||
input_tensor (np.ndarray): Input tensor of shape (batch_size, seq_length,
|
||||
embed_dim).
|
||||
input_tensor (np.ndarray): Input tensor of shape (batch_size,
|
||||
seq_length, embed_dim).
|
||||
|
||||
Returns:
|
||||
np.ndarray: Output tensor of shape (batch_size, seq_length, embed_dim).
|
||||
|
||||
>>> x = np.random.randn(2, 10, 4) # Batch size 2, sequence length 10, embedding dimension 4
|
||||
>>> x = np.random.randn(2, 10, 4) # Batch size 2, sequence
|
||||
>>> attention = SlidingWindowAttention(embed_dim=4, window_size=3)
|
||||
>>> output = attention.forward(x)
|
||||
>>> output.shape
|
||||
|
@ -93,9 +95,7 @@ if __name__ == "__main__":
|
|||
|
||||
# usage
|
||||
rng = np.random.default_rng()
|
||||
x = rng.standard_normal(
|
||||
(2, 10, 4)
|
||||
) # Batch size 2, sequence length 10, embedding dimension 4
|
||||
x = rng.standard_normal((2, 10, 4)) # Batch size 2,
|
||||
attention = SlidingWindowAttention(embed_dim=4, window_size=3)
|
||||
output = attention.forward(x)
|
||||
print(output)
|
||||
|
|
Loading…
Reference in New Issue
Block a user