Travis CI: Add a flake8 test for unused imports (#1038)

This commit is contained in:
Christian Clauss 2019-07-25 09:49:00 +02:00 committed by Anshul
parent 46bcee0978
commit 3c8e9314b6
5 changed files with 212 additions and 221 deletions

View File

@ -6,7 +6,7 @@ before_install: pip install --upgrade pip setuptools
install: pip install -r requirements.txt install: pip install -r requirements.txt
before_script: before_script:
- black --check . || true - black --check . || true
- flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics - flake8 . --count --select=E9,F401,F63,F7,F82 --show-source --statistics
script: script:
- mypy --ignore-missing-imports . - mypy --ignore-missing-imports .
- pytest . --doctest-modules - pytest . --doctest-modules

View File

@ -16,10 +16,19 @@ while Q is non-empty:
""" """
import collections G = {'A': ['B', 'C'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F'],
'F': ['C', 'E']}
def bfs(graph, start): def bfs(graph, start):
"""
>>> ''.join(sorted(bfs(G, 'A')))
'ABCDEF'
"""
explored, queue = set(), [start] # collections.deque([start]) explored, queue = set(), [start] # collections.deque([start])
explored.add(start) explored.add(start)
while queue: while queue:
@ -31,11 +40,5 @@ def bfs(graph, start):
return explored return explored
G = {'A': ['B', 'C'], if __name__ == '__main__':
'B': ['A', 'D', 'E'], print(bfs(G, 'A'))
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F'],
'F': ['C', 'E']}
print(bfs(G, 'A'))

View File

@ -6,8 +6,6 @@ Wikipedia reference: https://en.wikipedia.org/wiki/Volume
from math import pi from math import pi
PI = pi
def vol_cube(side_length): def vol_cube(side_length):
"""Calculate the Volume of a Cube.""" """Calculate the Volume of a Cube."""
@ -39,9 +37,7 @@ def vol_right_circ_cone(radius, height):
volume = (1/3) * pi * radius^2 * height volume = (1/3) * pi * radius^2 * height
""" """
import math return (float(1) / 3) * pi * (radius ** 2) * height
return (float(1) / 3) * PI * (radius ** 2) * height
def vol_prism(area_of_base, height): def vol_prism(area_of_base, height):
@ -71,7 +67,7 @@ def vol_sphere(radius):
V = (4/3) * pi * r^3 V = (4/3) * pi * r^3
Wikipedia reference: https://en.wikipedia.org/wiki/Sphere Wikipedia reference: https://en.wikipedia.org/wiki/Sphere
""" """
return (float(4) / 3) * PI * radius ** 3 return (float(4) / 3) * pi * radius ** 3
def vol_circular_cylinder(radius, height): def vol_circular_cylinder(radius, height):
@ -80,7 +76,7 @@ def vol_circular_cylinder(radius, height):
Wikipedia reference: https://en.wikipedia.org/wiki/Cylinder Wikipedia reference: https://en.wikipedia.org/wiki/Cylinder
volume = pi * radius^2 * height volume = pi * radius^2 * height
""" """
return PI * radius ** 2 * height return pi * radius ** 2 * height
def main(): def main():

View File

@ -16,7 +16,7 @@ primeFactorization(number)
greatestPrimeFactor(number) greatestPrimeFactor(number)
smallestPrimeFactor(number) smallestPrimeFactor(number)
getPrime(n) getPrime(n)
getPrimesBetween(pNumber1, pNumber2) getPrimesBetween(pNumber1, pNumber2)
---- ----
@ -39,34 +39,36 @@ goldbach(number) // Goldbach's assumption
""" """
from math import sqrt
def isPrime(number): def isPrime(number):
""" """
input: positive integer 'number' input: positive integer 'number'
returns true if 'number' is prime otherwise false. returns true if 'number' is prime otherwise false.
""" """
import math # for function sqrt
# precondition # precondition
assert isinstance(number,int) and (number >= 0) , \ assert isinstance(number,int) and (number >= 0) , \
"'number' must been an int and positive" "'number' must been an int and positive"
status = True status = True
# 0 and 1 are none primes. # 0 and 1 are none primes.
if number <= 1: if number <= 1:
status = False status = False
for divisor in range(2,int(round(math.sqrt(number)))+1): for divisor in range(2,int(round(sqrt(number)))+1):
# if 'number' divisible by 'divisor' then sets 'status' # if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop. # of false and break up the loop.
if number % divisor == 0: if number % divisor == 0:
status = False status = False
break break
# precondition # precondition
assert isinstance(status,bool), "'status' must been from type bool" assert isinstance(status,bool), "'status' must been from type bool"
return status return status
# ------------------------------------------ # ------------------------------------------
@ -75,37 +77,37 @@ def sieveEr(N):
""" """
input: positive integer 'N' > 2 input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N. returns a list of prime numbers from 2 up to N.
This function implements the algorithm called This function implements the algorithm called
sieve of erathostenes. sieve of erathostenes.
""" """
# precondition # precondition
assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2" assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2"
# beginList: conatins all natural numbers from 2 upt to N # beginList: conatins all natural numbers from 2 upt to N
beginList = [x for x in range(2,N+1)] beginList = [x for x in range(2,N+1)]
ans = [] # this list will be returns. ans = [] # this list will be returns.
# actual sieve of erathostenes # actual sieve of erathostenes
for i in range(len(beginList)): for i in range(len(beginList)):
for j in range(i+1,len(beginList)): for j in range(i+1,len(beginList)):
if (beginList[i] != 0) and \ if (beginList[i] != 0) and \
(beginList[j] % beginList[i] == 0): (beginList[j] % beginList[i] == 0):
beginList[j] = 0 beginList[j] = 0
# filters actual prime numbers. # filters actual prime numbers.
ans = [x for x in beginList if x != 0] ans = [x for x in beginList if x != 0]
# precondition # precondition
assert isinstance(ans,list), "'ans' must been from type list" assert isinstance(ans,list), "'ans' must been from type list"
return ans return ans
# -------------------------------- # --------------------------------
@ -114,203 +116,201 @@ def getPrimeNumbers(N):
input: positive integer 'N' > 2 input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N (inclusive) returns a list of prime numbers from 2 up to N (inclusive)
This function is more efficient as function 'sieveEr(...)' This function is more efficient as function 'sieveEr(...)'
""" """
# precondition # precondition
assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2" assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2"
ans = [] ans = []
# iterates over all numbers between 2 up to N+1 # iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans' # if a number is prime then appends to list 'ans'
for number in range(2,N+1): for number in range(2,N+1):
if isPrime(number): if isPrime(number):
ans.append(number) ans.append(number)
# precondition # precondition
assert isinstance(ans,list), "'ans' must been from type list" assert isinstance(ans,list), "'ans' must been from type list"
return ans return ans
# ----------------------------------------- # -----------------------------------------
def primeFactorization(number): def primeFactorization(number):
""" """
input: positive integer 'number' input: positive integer 'number'
returns a list of the prime number factors of 'number' returns a list of the prime number factors of 'number'
""" """
import math # for function sqrt
# precondition # precondition
assert isinstance(number,int) and number >= 0, \ assert isinstance(number,int) and number >= 0, \
"'number' must been an int and >= 0" "'number' must been an int and >= 0"
ans = [] # this list will be returns of the function. ans = [] # this list will be returns of the function.
# potential prime number factors. # potential prime number factors.
factor = 2 factor = 2
quotient = number quotient = number
if number == 0 or number == 1: if number == 0 or number == 1:
ans.append(number) ans.append(number)
# if 'number' not prime then builds the prime factorization of 'number' # if 'number' not prime then builds the prime factorization of 'number'
elif not isPrime(number): elif not isPrime(number):
while (quotient != 1): while (quotient != 1):
if isPrime(factor) and (quotient % factor == 0): if isPrime(factor) and (quotient % factor == 0):
ans.append(factor) ans.append(factor)
quotient /= factor quotient /= factor
else: else:
factor += 1 factor += 1
else: else:
ans.append(number) ans.append(number)
# precondition # precondition
assert isinstance(ans,list), "'ans' must been from type list" assert isinstance(ans,list), "'ans' must been from type list"
return ans return ans
# ----------------------------------------- # -----------------------------------------
def greatestPrimeFactor(number): def greatestPrimeFactor(number):
""" """
input: positive integer 'number' >= 0 input: positive integer 'number' >= 0
returns the greatest prime number factor of 'number' returns the greatest prime number factor of 'number'
""" """
# precondition # precondition
assert isinstance(number,int) and (number >= 0), \ assert isinstance(number,int) and (number >= 0), \
"'number' bust been an int and >= 0" "'number' bust been an int and >= 0"
ans = 0 ans = 0
# prime factorization of 'number' # prime factorization of 'number'
primeFactors = primeFactorization(number) primeFactors = primeFactorization(number)
ans = max(primeFactors) ans = max(primeFactors)
# precondition # precondition
assert isinstance(ans,int), "'ans' must been from type int" assert isinstance(ans,int), "'ans' must been from type int"
return ans return ans
# ---------------------------------------------- # ----------------------------------------------
def smallestPrimeFactor(number): def smallestPrimeFactor(number):
""" """
input: integer 'number' >= 0 input: integer 'number' >= 0
returns the smallest prime number factor of 'number' returns the smallest prime number factor of 'number'
""" """
# precondition # precondition
assert isinstance(number,int) and (number >= 0), \ assert isinstance(number,int) and (number >= 0), \
"'number' bust been an int and >= 0" "'number' bust been an int and >= 0"
ans = 0 ans = 0
# prime factorization of 'number' # prime factorization of 'number'
primeFactors = primeFactorization(number) primeFactors = primeFactorization(number)
ans = min(primeFactors) ans = min(primeFactors)
# precondition # precondition
assert isinstance(ans,int), "'ans' must been from type int" assert isinstance(ans,int), "'ans' must been from type int"
return ans return ans
# ---------------------- # ----------------------
def isEven(number): def isEven(number):
""" """
input: integer 'number' input: integer 'number'
returns true if 'number' is even, otherwise false. returns true if 'number' is even, otherwise false.
""" """
# precondition # precondition
assert isinstance(number, int), "'number' must been an int" assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 == 0, bool), "compare bust been from type bool" assert isinstance(number % 2 == 0, bool), "compare bust been from type bool"
return number % 2 == 0 return number % 2 == 0
# ------------------------ # ------------------------
def isOdd(number): def isOdd(number):
""" """
input: integer 'number' input: integer 'number'
returns true if 'number' is odd, otherwise false. returns true if 'number' is odd, otherwise false.
""" """
# precondition # precondition
assert isinstance(number, int), "'number' must been an int" assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 != 0, bool), "compare bust been from type bool" assert isinstance(number % 2 != 0, bool), "compare bust been from type bool"
return number % 2 != 0 return number % 2 != 0
# ------------------------ # ------------------------
def goldbach(number): def goldbach(number):
""" """
Goldbach's assumption Goldbach's assumption
input: a even positive integer 'number' > 2 input: a even positive integer 'number' > 2
returns a list of two prime numbers whose sum is equal to 'number' returns a list of two prime numbers whose sum is equal to 'number'
""" """
# precondition # precondition
assert isinstance(number,int) and (number > 2) and isEven(number), \ assert isinstance(number,int) and (number > 2) and isEven(number), \
"'number' must been an int, even and > 2" "'number' must been an int, even and > 2"
ans = [] # this list will returned ans = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number' # creates a list of prime numbers between 2 up to 'number'
primeNumbers = getPrimeNumbers(number) primeNumbers = getPrimeNumbers(number)
lenPN = len(primeNumbers) lenPN = len(primeNumbers)
# run variable for while-loops. # run variable for while-loops.
i = 0 i = 0
j = None j = None
# exit variable. for break up the loops # exit variable. for break up the loops
loop = True loop = True
while (i < lenPN and loop): while (i < lenPN and loop):
j = i+1 j = i+1
while (j < lenPN and loop): while (j < lenPN and loop):
if primeNumbers[i] + primeNumbers[j] == number: if primeNumbers[i] + primeNumbers[j] == number:
loop = False loop = False
ans.append(primeNumbers[i]) ans.append(primeNumbers[i])
ans.append(primeNumbers[j]) ans.append(primeNumbers[j])
j += 1 j += 1
i += 1 i += 1
# precondition # precondition
assert isinstance(ans,list) and (len(ans) == 2) and \ assert isinstance(ans,list) and (len(ans) == 2) and \
(ans[0] + ans[1] == number) and isPrime(ans[0]) and isPrime(ans[1]), \ (ans[0] + ans[1] == number) and isPrime(ans[0]) and isPrime(ans[1]), \
"'ans' must contains two primes. And sum of elements must been eq 'number'" "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans return ans
# ---------------------------------------------- # ----------------------------------------------
def gcd(number1,number2): def gcd(number1,number2):
@ -319,173 +319,173 @@ def gcd(number1,number2):
input: two positive integer 'number1' and 'number2' input: two positive integer 'number1' and 'number2'
returns the greatest common divisor of 'number1' and 'number2' returns the greatest common divisor of 'number1' and 'number2'
""" """
# precondition # precondition
assert isinstance(number1,int) and isinstance(number2,int) \ assert isinstance(number1,int) and isinstance(number2,int) \
and (number1 >= 0) and (number2 >= 0), \ and (number1 >= 0) and (number2 >= 0), \
"'number1' and 'number2' must been positive integer." "'number1' and 'number2' must been positive integer."
rest = 0 rest = 0
while number2 != 0: while number2 != 0:
rest = number1 % number2 rest = number1 % number2
number1 = number2 number1 = number2
number2 = rest number2 = rest
# precondition # precondition
assert isinstance(number1,int) and (number1 >= 0), \ assert isinstance(number1,int) and (number1 >= 0), \
"'number' must been from type int and positive" "'number' must been from type int and positive"
return number1 return number1
# ---------------------------------------------------- # ----------------------------------------------------
def kgV(number1, number2): def kgV(number1, number2):
""" """
Least common multiple Least common multiple
input: two positive integer 'number1' and 'number2' input: two positive integer 'number1' and 'number2'
returns the least common multiple of 'number1' and 'number2' returns the least common multiple of 'number1' and 'number2'
""" """
# precondition # precondition
assert isinstance(number1,int) and isinstance(number2,int) \ assert isinstance(number1,int) and isinstance(number2,int) \
and (number1 >= 1) and (number2 >= 1), \ and (number1 >= 1) and (number2 >= 1), \
"'number1' and 'number2' must been positive integer." "'number1' and 'number2' must been positive integer."
ans = 1 # actual answer that will be return. ans = 1 # actual answer that will be return.
# for kgV (x,1) # for kgV (x,1)
if number1 > 1 and number2 > 1: if number1 > 1 and number2 > 1:
# builds the prime factorization of 'number1' and 'number2' # builds the prime factorization of 'number1' and 'number2'
primeFac1 = primeFactorization(number1) primeFac1 = primeFactorization(number1)
primeFac2 = primeFactorization(number2) primeFac2 = primeFactorization(number2)
elif number1 == 1 or number2 == 1: elif number1 == 1 or number2 == 1:
primeFac1 = [] primeFac1 = []
primeFac2 = [] primeFac2 = []
ans = max(number1,number2) ans = max(number1,number2)
count1 = 0 count1 = 0
count2 = 0 count2 = 0
done = [] # captured numbers int both 'primeFac1' and 'primeFac2' done = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1 # iterates through primeFac1
for n in primeFac1: for n in primeFac1:
if n not in done: if n not in done:
if n in primeFac2: if n in primeFac2:
count1 = primeFac1.count(n) count1 = primeFac1.count(n)
count2 = primeFac2.count(n) count2 = primeFac2.count(n)
for i in range(max(count1,count2)): for i in range(max(count1,count2)):
ans *= n ans *= n
else: else:
count1 = primeFac1.count(n) count1 = primeFac1.count(n)
for i in range(count1): for i in range(count1):
ans *= n ans *= n
done.append(n) done.append(n)
# iterates through primeFac2 # iterates through primeFac2
for n in primeFac2: for n in primeFac2:
if n not in done: if n not in done:
count2 = primeFac2.count(n) count2 = primeFac2.count(n)
for i in range(count2): for i in range(count2):
ans *= n ans *= n
done.append(n) done.append(n)
# precondition # precondition
assert isinstance(ans,int) and (ans >= 0), \ assert isinstance(ans,int) and (ans >= 0), \
"'ans' must been from type int and positive" "'ans' must been from type int and positive"
return ans return ans
# ---------------------------------- # ----------------------------------
def getPrime(n): def getPrime(n):
""" """
Gets the n-th prime number. Gets the n-th prime number.
input: positive integer 'n' >= 0 input: positive integer 'n' >= 0
returns the n-th prime number, beginning at index 0 returns the n-th prime number, beginning at index 0
""" """
# precondition # precondition
assert isinstance(n,int) and (n >= 0), "'number' must been a positive int" assert isinstance(n,int) and (n >= 0), "'number' must been a positive int"
index = 0 index = 0
ans = 2 # this variable holds the answer ans = 2 # this variable holds the answer
while index < n: while index < n:
index += 1 index += 1
ans += 1 # counts to the next number ans += 1 # counts to the next number
# if ans not prime then # if ans not prime then
# runs to the next prime number. # runs to the next prime number.
while not isPrime(ans): while not isPrime(ans):
ans += 1 ans += 1
# precondition # precondition
assert isinstance(ans,int) and isPrime(ans), \ assert isinstance(ans,int) and isPrime(ans), \
"'ans' must been a prime number and from type int" "'ans' must been a prime number and from type int"
return ans return ans
# --------------------------------------------------- # ---------------------------------------------------
def getPrimesBetween(pNumber1, pNumber2): def getPrimesBetween(pNumber1, pNumber2):
""" """
input: prime numbers 'pNumber1' and 'pNumber2' input: prime numbers 'pNumber1' and 'pNumber2'
pNumber1 < pNumber2 pNumber1 < pNumber2
returns a list of all prime numbers between 'pNumber1' (exclusiv) returns a list of all prime numbers between 'pNumber1' (exclusiv)
and 'pNumber2' (exclusiv) and 'pNumber2' (exclusiv)
""" """
# precondition # precondition
assert isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2), \ assert isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2), \
"The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
number = pNumber1 + 1 # jump to the next number number = pNumber1 + 1 # jump to the next number
ans = [] # this list will be returns. ans = [] # this list will be returns.
# if number is not prime then # if number is not prime then
# fetch the next prime number. # fetch the next prime number.
while not isPrime(number): while not isPrime(number):
number += 1 number += 1
while number < pNumber2: while number < pNumber2:
ans.append(number) ans.append(number)
number += 1 number += 1
# fetch the next prime number. # fetch the next prime number.
while not isPrime(number): while not isPrime(number):
number += 1 number += 1
# precondition # precondition
assert isinstance(ans,list) and ans[0] != pNumber1 \ assert isinstance(ans,list) and ans[0] != pNumber1 \
and ans[len(ans)-1] != pNumber2, \ and ans[len(ans)-1] != pNumber2, \
"'ans' must been a list without the arguments" "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' ! # 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans return ans
# ---------------------------------------------------- # ----------------------------------------------------
def getDivisors(n): def getDivisors(n):
@ -493,25 +493,23 @@ def getDivisors(n):
input: positive integer 'n' >= 1 input: positive integer 'n' >= 1
returns all divisors of n (inclusive 1 and 'n') returns all divisors of n (inclusive 1 and 'n')
""" """
# precondition # precondition
assert isinstance(n,int) and (n >= 1), "'n' must been int and >= 1" assert isinstance(n,int) and (n >= 1), "'n' must been int and >= 1"
from math import sqrt
ans = [] # will be returned. ans = [] # will be returned.
for divisor in range(1,n+1): for divisor in range(1,n+1):
if n % divisor == 0: if n % divisor == 0:
ans.append(divisor) ans.append(divisor)
#precondition #precondition
assert ans[0] == 1 and ans[len(ans)-1] == n, \ assert ans[0] == 1 and ans[len(ans)-1] == n, \
"Error in function getDivisiors(...)" "Error in function getDivisiors(...)"
return ans return ans
@ -523,18 +521,18 @@ def isPerfectNumber(number):
input: positive integer 'number' > 1 input: positive integer 'number' > 1
returns true if 'number' is a perfect number otherwise false. returns true if 'number' is a perfect number otherwise false.
""" """
# precondition # precondition
assert isinstance(number,int) and (number > 1), \ assert isinstance(number,int) and (number > 1), \
"'number' must been an int and >= 1" "'number' must been an int and >= 1"
divisors = getDivisors(number) divisors = getDivisors(number)
# precondition # precondition
assert isinstance(divisors,list) and(divisors[0] == 1) and \ assert isinstance(divisors,list) and(divisors[0] == 1) and \
(divisors[len(divisors)-1] == number), \ (divisors[len(divisors)-1] == number), \
"Error in help-function getDivisiors(...)" "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1] # summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number return sum(divisors[:-1]) == number
@ -545,13 +543,13 @@ def simplifyFraction(numerator, denominator):
input: two integer 'numerator' and 'denominator' input: two integer 'numerator' and 'denominator'
assumes: 'denominator' != 0 assumes: 'denominator' != 0
returns: a tuple with simplify numerator and denominator. returns: a tuple with simplify numerator and denominator.
""" """
# precondition # precondition
assert isinstance(numerator, int) and isinstance(denominator,int) \ assert isinstance(numerator, int) and isinstance(denominator,int) \
and (denominator != 0), \ and (denominator != 0), \
"The arguments must been from type int and 'denominator' != 0" "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator. # build the greatest common divisor of numerator and denominator.
gcdOfFraction = gcd(abs(numerator), abs(denominator)) gcdOfFraction = gcd(abs(numerator), abs(denominator))
@ -559,46 +557,46 @@ def simplifyFraction(numerator, denominator):
assert isinstance(gcdOfFraction, int) and (numerator % gcdOfFraction == 0) \ assert isinstance(gcdOfFraction, int) and (numerator % gcdOfFraction == 0) \
and (denominator % gcdOfFraction == 0), \ and (denominator % gcdOfFraction == 0), \
"Error in function gcd(...,...)" "Error in function gcd(...,...)"
return (numerator // gcdOfFraction, denominator // gcdOfFraction) return (numerator // gcdOfFraction, denominator // gcdOfFraction)
# ----------------------------------------------------------------- # -----------------------------------------------------------------
def factorial(n): def factorial(n):
""" """
input: positive integer 'n' input: positive integer 'n'
returns the factorial of 'n' (n!) returns the factorial of 'n' (n!)
""" """
# precondition # precondition
assert isinstance(n,int) and (n >= 0), "'n' must been a int and >= 0" assert isinstance(n,int) and (n >= 0), "'n' must been a int and >= 0"
ans = 1 # this will be return. ans = 1 # this will be return.
for factor in range(1,n+1): for factor in range(1,n+1):
ans *= factor ans *= factor
return ans return ans
# ------------------------------------------------------------------- # -------------------------------------------------------------------
def fib(n): def fib(n):
""" """
input: positive integer 'n' input: positive integer 'n'
returns the n-th fibonacci term , indexing by 0 returns the n-th fibonacci term , indexing by 0
""" """
# precondition # precondition
assert isinstance(n, int) and (n >= 0), "'n' must been an int and >= 0" assert isinstance(n, int) and (n >= 0), "'n' must been an int and >= 0"
tmp = 0 tmp = 0
fib1 = 1 fib1 = 1
ans = 1 # this will be return ans = 1 # this will be return
for i in range(n-1): for i in range(n-1):
tmp = ans tmp = ans
ans += fib1 ans += fib1
fib1 = tmp fib1 = tmp
return ans return ans

View File

@ -3,18 +3,12 @@ Problem Statement:
Work out the first ten digits of the sum of the following one-hundred 50-digit Work out the first ten digits of the sum of the following one-hundred 50-digit
numbers. numbers.
""" """
from __future__ import print_function
import os
try:
raw_input # Python 2
except NameError:
raw_input = input # Python 3
def solution(array): def solution(array):
"""Returns the first ten digits of the sum of the array elements. """Returns the first ten digits of the sum of the array elements.
>>> import os
>>> sum = 0 >>> sum = 0
>>> array = [] >>> array = []
>>> with open(os.path.dirname(__file__) + "/num.txt","r") as f: >>> with open(os.path.dirname(__file__) + "/num.txt","r") as f: