From 3d6f3c41881da75653b804d7a5964ea90df9d2ad Mon Sep 17 00:00:00 2001 From: hollowcrust <72879387+hollowcrust@users.noreply.github.com> Date: Mon, 16 Oct 2023 04:13:27 +0800 Subject: [PATCH] Added data_structures/arrays/sparse_table.py (#10437) * Create sparse_table.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Descriptive names for variables * Fix ruff check error * Update sparse_table.py * Add comments, change variable names * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix typo * Update sparse_table.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss --- data_structures/arrays/sparse_table.py | 94 ++++++++++++++++++++++++++ 1 file changed, 94 insertions(+) create mode 100644 data_structures/arrays/sparse_table.py diff --git a/data_structures/arrays/sparse_table.py b/data_structures/arrays/sparse_table.py new file mode 100644 index 000000000..a15d5649e --- /dev/null +++ b/data_structures/arrays/sparse_table.py @@ -0,0 +1,94 @@ +""" + Sparse table is a data structure that allows answering range queries on + a static number list, i.e. the elements do not change throughout all the queries. + + The implementation below will solve the problem of Range Minimum Query: + Finding the minimum value of a subset [L..R] of a static number list. + + Overall time complexity: O(nlogn) + Overall space complexity: O(nlogn) + + Wikipedia link: https://en.wikipedia.org/wiki/Range_minimum_query +""" +from math import log2 + + +def build_sparse_table(number_list: list[int]) -> list[list[int]]: + """ + Precompute range minimum queries with power of two length and store the precomputed + values in a table. + + >>> build_sparse_table([8, 1, 0, 3, 4, 9, 3]) + [[8, 1, 0, 3, 4, 9, 3], [1, 0, 0, 3, 4, 3, 0], [0, 0, 0, 3, 0, 0, 0]] + >>> build_sparse_table([3, 1, 9]) + [[3, 1, 9], [1, 1, 0]] + >>> build_sparse_table([]) + Traceback (most recent call last): + ... + ValueError: empty number list not allowed + """ + if not number_list: + raise ValueError("empty number list not allowed") + + length = len(number_list) + # Initialise sparse_table -- sparse_table[j][i] represents the minimum value of the + # subset of length (2 ** j) of number_list, starting from index i. + + # smallest power of 2 subset length that fully covers number_list + row = int(log2(length)) + 1 + sparse_table = [[0 for i in range(length)] for j in range(row)] + + # minimum of subset of length 1 is that value itself + for i, value in enumerate(number_list): + sparse_table[0][i] = value + j = 1 + + # compute the minimum value for all intervals with size (2 ** j) + while (1 << j) <= length: + i = 0 + # while subset starting from i still have at least (2 ** j) elements + while (i + (1 << j) - 1) < length: + # split range [i, i + 2 ** j] and find minimum of 2 halves + sparse_table[j][i] = min( + sparse_table[j - 1][i + (1 << (j - 1))], sparse_table[j - 1][i] + ) + i += 1 + j += 1 + return sparse_table + + +def query(sparse_table: list[list[int]], left_bound: int, right_bound: int) -> int: + """ + >>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 0, 4) + 0 + >>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 4, 6) + 3 + >>> query(build_sparse_table([3, 1, 9]), 2, 2) + 9 + >>> query(build_sparse_table([3, 1, 9]), 0, 1) + 1 + >>> query(build_sparse_table([8, 1, 0, 3, 4, 9, 3]), 0, 11) + Traceback (most recent call last): + ... + IndexError: list index out of range + >>> query(build_sparse_table([]), 0, 0) + Traceback (most recent call last): + ... + ValueError: empty number list not allowed + """ + if left_bound < 0 or right_bound >= len(sparse_table[0]): + raise IndexError("list index out of range") + + # highest subset length of power of 2 that is within range [left_bound, right_bound] + j = int(log2(right_bound - left_bound + 1)) + + # minimum of 2 overlapping smaller subsets: + # [left_bound, left_bound + 2 ** j - 1] and [right_bound - 2 ** j + 1, right_bound] + return min(sparse_table[j][right_bound - (1 << j) + 1], sparse_table[j][left_bound]) + + +if __name__ == "__main__": + from doctest import testmod + + testmod() + print(f"{query(build_sparse_table([3, 1, 9]), 2, 2) = }")