diff --git a/sorts/random_normal_distribution_quicksort.py b/sorts/random_normal_distribution_quicksort.py deleted file mode 100644 index f7f60903c..000000000 --- a/sorts/random_normal_distribution_quicksort.py +++ /dev/null @@ -1,62 +0,0 @@ -from random import randint -from tempfile import TemporaryFile - -import numpy as np - - -def _in_place_quick_sort(a, start, end): - count = 0 - if start < end: - pivot = randint(start, end) - temp = a[end] - a[end] = a[pivot] - a[pivot] = temp - - p, count = _in_place_partition(a, start, end) - count += _in_place_quick_sort(a, start, p - 1) - count += _in_place_quick_sort(a, p + 1, end) - return count - - -def _in_place_partition(a, start, end): - count = 0 - pivot = randint(start, end) - temp = a[end] - a[end] = a[pivot] - a[pivot] = temp - new_pivot_index = start - 1 - for index in range(start, end): - count += 1 - if a[index] < a[end]: # check if current val is less than pivot value - new_pivot_index = new_pivot_index + 1 - temp = a[new_pivot_index] - a[new_pivot_index] = a[index] - a[index] = temp - - temp = a[new_pivot_index + 1] - a[new_pivot_index + 1] = a[end] - a[end] = temp - return new_pivot_index + 1, count - - -outfile = TemporaryFile() -p = 100 # 1000 elements are to be sorted - - -mu, sigma = 0, 1 # mean and standard deviation -X = np.random.normal(mu, sigma, p) -np.save(outfile, X) -print("The array is") -print(X) - - -outfile.seek(0) # using the same array -M = np.load(outfile) -r = len(M) - 1 -z = _in_place_quick_sort(M, 0, r) - -print( - "No of Comparisons for 100 elements selected from a standard normal distribution" - "is :" -) -print(z)