mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
Update logistic_regression.py
This commit is contained in:
parent
2638d57c71
commit
3fa8f7bc2f
|
@ -1,98 +1,101 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# # Logistic Regression from scratch
|
||||
## Logistic Regression from scratch
|
||||
|
||||
# In[62]:
|
||||
|
||||
# In[63]:
|
||||
|
||||
# importing all the required libraries
|
||||
|
||||
''' Implementing logistic regression for classification problem
|
||||
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac'''
|
||||
|
||||
|
||||
# In[63]:
|
||||
|
||||
|
||||
#importing all the required libraries
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
get_ipython().run_line_magic('matplotlib', 'inline')
|
||||
|
||||
# get_ipython().run_line_magic('matplotlib', 'inline')
|
||||
|
||||
from sklearn import datasets
|
||||
|
||||
|
||||
# In[67]:
|
||||
|
||||
# sigmoid function or logistic function is used as a hypothesis function in classification problems
|
||||
|
||||
#sigmoid function or logistic function is used as a hypothesis function in classification problems
|
||||
def sigmoid_function(z):
|
||||
return 1/(1+np.exp(-z))
|
||||
return 1 / (1 + np.exp(-z))
|
||||
|
||||
|
||||
def cost_function(h,y):
|
||||
return (-y*np.log(h)-(1-y)*np.log(1-h)).mean()
|
||||
def cost_function(h, y):
|
||||
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
|
||||
|
||||
|
||||
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
|
||||
def logistic_reg(alpha,X,y,max_iterations=70000):
|
||||
converged=False
|
||||
iterations=0
|
||||
theta=np.zeros(X.shape[1])
|
||||
|
||||
|
||||
|
||||
def logistic_reg(
|
||||
alpha,
|
||||
X,
|
||||
y,
|
||||
max_iterations=70000,
|
||||
):
|
||||
converged = False
|
||||
iterations = 0
|
||||
theta = np.zeros(X.shape[1])
|
||||
|
||||
while not converged:
|
||||
z=np.dot(X,theta)
|
||||
h=sigmoid_function(z)
|
||||
gradient = np.dot(X.T,(h-y))/y.size
|
||||
theta=theta-(alpha)*gradient
|
||||
|
||||
z=np.dot(X,theta)
|
||||
h=sigmoid_function(z)
|
||||
J=cost_function(h,y)
|
||||
|
||||
|
||||
|
||||
iterations+=1 #update iterations
|
||||
|
||||
|
||||
if iterations== max_iterations:
|
||||
print("Maximum iterations exceeded!")
|
||||
print("Minimal cost function J=",J)
|
||||
converged=True
|
||||
|
||||
z = np.dot(X, theta)
|
||||
h = sigmoid_function(z)
|
||||
gradient = np.dot(X.T, h - y) / y.size
|
||||
theta = theta - alpha * gradient
|
||||
|
||||
z = np.dot(X, theta)
|
||||
h = sigmoid_function(z)
|
||||
J = cost_function(h, y)
|
||||
|
||||
iterations += 1 # update iterations
|
||||
|
||||
if iterations == max_iterations:
|
||||
print ('Maximum iterations exceeded!')
|
||||
print ('Minimal cost function J=', J)
|
||||
converged = True
|
||||
|
||||
return theta
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# In[68]:
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
iris=datasets.load_iris()
|
||||
if __name__ == '__main__':
|
||||
iris = datasets.load_iris()
|
||||
X = iris.data[:, :2]
|
||||
y = (iris.target != 0) * 1
|
||||
|
||||
alpha=0.1
|
||||
theta=logistic_reg(alpha,X,y,max_iterations=70000)
|
||||
print(theta)
|
||||
|
||||
alpha = 0.1
|
||||
theta = logistic_reg(alpha, X, y, max_iterations=70000)
|
||||
print (theta)
|
||||
|
||||
|
||||
def predict_prob(X):
|
||||
return sigmoid_function(np.dot(X,theta)) # predicting the value of probability from the logistic regression algorithm
|
||||
|
||||
|
||||
return sigmoid_function(np.dot(X, theta)) # predicting the value of probability from the logistic regression algorithm
|
||||
|
||||
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0')
|
||||
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1')
|
||||
x1_min, x1_max = X[:,0].min(), X[:,0].max(),
|
||||
x2_min, x2_max = X[:,1].min(), X[:,1].max(),
|
||||
xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
|
||||
(x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max())
|
||||
(x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max())
|
||||
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max),
|
||||
np.linspace(x2_min, x2_max))
|
||||
grid = np.c_[xx1.ravel(), xx2.ravel()]
|
||||
probs = predict_prob(grid).reshape(xx1.shape)
|
||||
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors='black');
|
||||
|
||||
plt.legend();
|
||||
|
||||
|
||||
plt.contour(
|
||||
xx1,
|
||||
xx2,
|
||||
probs,
|
||||
[0.5],
|
||||
linewidths=1,
|
||||
colors='black',
|
||||
)
|
||||
|
||||
plt.legend()
|
||||
|
|
Loading…
Reference in New Issue
Block a user