mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
Update logistic_regression.py
This commit is contained in:
parent
2638d57c71
commit
3fa8f7bc2f
|
@ -1,98 +1,101 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/python
|
||||||
# coding: utf-8
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
# # Logistic Regression from scratch
|
## Logistic Regression from scratch
|
||||||
|
|
||||||
# In[62]:
|
# In[62]:
|
||||||
|
|
||||||
|
# In[63]:
|
||||||
|
|
||||||
|
# importing all the required libraries
|
||||||
|
|
||||||
''' Implementing logistic regression for classification problem
|
''' Implementing logistic regression for classification problem
|
||||||
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac'''
|
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac'''
|
||||||
|
|
||||||
|
|
||||||
# In[63]:
|
|
||||||
|
|
||||||
|
|
||||||
#importing all the required libraries
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
get_ipython().run_line_magic('matplotlib', 'inline')
|
|
||||||
|
# get_ipython().run_line_magic('matplotlib', 'inline')
|
||||||
|
|
||||||
from sklearn import datasets
|
from sklearn import datasets
|
||||||
|
|
||||||
|
|
||||||
# In[67]:
|
# In[67]:
|
||||||
|
|
||||||
|
# sigmoid function or logistic function is used as a hypothesis function in classification problems
|
||||||
|
|
||||||
#sigmoid function or logistic function is used as a hypothesis function in classification problems
|
|
||||||
def sigmoid_function(z):
|
def sigmoid_function(z):
|
||||||
return 1/(1+np.exp(-z))
|
return 1 / (1 + np.exp(-z))
|
||||||
|
|
||||||
|
|
||||||
def cost_function(h,y):
|
def cost_function(h, y):
|
||||||
return (-y*np.log(h)-(1-y)*np.log(1-h)).mean()
|
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
|
||||||
|
|
||||||
|
|
||||||
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
|
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
|
||||||
def logistic_reg(alpha,X,y,max_iterations=70000):
|
|
||||||
converged=False
|
|
||||||
iterations=0
|
|
||||||
theta=np.zeros(X.shape[1])
|
|
||||||
|
|
||||||
|
def logistic_reg(
|
||||||
|
alpha,
|
||||||
|
X,
|
||||||
|
y,
|
||||||
|
max_iterations=70000,
|
||||||
|
):
|
||||||
|
converged = False
|
||||||
|
iterations = 0
|
||||||
|
theta = np.zeros(X.shape[1])
|
||||||
|
|
||||||
while not converged:
|
while not converged:
|
||||||
z=np.dot(X,theta)
|
z = np.dot(X, theta)
|
||||||
h=sigmoid_function(z)
|
h = sigmoid_function(z)
|
||||||
gradient = np.dot(X.T,(h-y))/y.size
|
gradient = np.dot(X.T, h - y) / y.size
|
||||||
theta=theta-(alpha)*gradient
|
theta = theta - alpha * gradient
|
||||||
|
|
||||||
z=np.dot(X,theta)
|
z = np.dot(X, theta)
|
||||||
h=sigmoid_function(z)
|
h = sigmoid_function(z)
|
||||||
J=cost_function(h,y)
|
J = cost_function(h, y)
|
||||||
|
|
||||||
|
iterations += 1 # update iterations
|
||||||
|
|
||||||
|
if iterations == max_iterations:
|
||||||
iterations+=1 #update iterations
|
print ('Maximum iterations exceeded!')
|
||||||
|
print ('Minimal cost function J=', J)
|
||||||
|
converged = True
|
||||||
if iterations== max_iterations:
|
|
||||||
print("Maximum iterations exceeded!")
|
|
||||||
print("Minimal cost function J=",J)
|
|
||||||
converged=True
|
|
||||||
|
|
||||||
return theta
|
return theta
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# In[68]:
|
# In[68]:
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
if __name__=='__main__':
|
iris = datasets.load_iris()
|
||||||
iris=datasets.load_iris()
|
|
||||||
X = iris.data[:, :2]
|
X = iris.data[:, :2]
|
||||||
y = (iris.target != 0) * 1
|
y = (iris.target != 0) * 1
|
||||||
|
|
||||||
alpha=0.1
|
alpha = 0.1
|
||||||
theta=logistic_reg(alpha,X,y,max_iterations=70000)
|
theta = logistic_reg(alpha, X, y, max_iterations=70000)
|
||||||
print(theta)
|
print (theta)
|
||||||
|
|
||||||
|
|
||||||
def predict_prob(X):
|
def predict_prob(X):
|
||||||
return sigmoid_function(np.dot(X,theta)) # predicting the value of probability from the logistic regression algorithm
|
return sigmoid_function(np.dot(X, theta)) # predicting the value of probability from the logistic regression algorithm
|
||||||
|
|
||||||
|
|
||||||
plt.figure(figsize=(10, 6))
|
plt.figure(figsize=(10, 6))
|
||||||
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0')
|
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0')
|
||||||
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1')
|
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1')
|
||||||
x1_min, x1_max = X[:,0].min(), X[:,0].max(),
|
(x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max())
|
||||||
x2_min, x2_max = X[:,1].min(), X[:,1].max(),
|
(x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max())
|
||||||
xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
|
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max),
|
||||||
|
np.linspace(x2_min, x2_max))
|
||||||
grid = np.c_[xx1.ravel(), xx2.ravel()]
|
grid = np.c_[xx1.ravel(), xx2.ravel()]
|
||||||
probs = predict_prob(grid).reshape(xx1.shape)
|
probs = predict_prob(grid).reshape(xx1.shape)
|
||||||
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors='black');
|
plt.contour(
|
||||||
|
xx1,
|
||||||
plt.legend();
|
xx2,
|
||||||
|
probs,
|
||||||
|
[0.5],
|
||||||
|
linewidths=1,
|
||||||
|
colors='black',
|
||||||
|
)
|
||||||
|
|
||||||
|
plt.legend()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user