mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-30 22:23:42 +00:00
Created problem_45 in project_euler and Speed Boost for problem_34/sol1.py (#2349)
* Create __init__.py * Add files via upload * Update sol1.py * Update sol1.py * Update project_euler/problem_45/sol1.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update sol1.py * Update sol1.py * Update project_euler/problem_34/sol1.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update project_euler/problem_34/sol1.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update sol1.py * Update project_euler/problem_34/sol1.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update sol1.py * Update project_euler/problem_34/sol1.py Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
5cfc017ebb
commit
402ba7f49a
|
@ -4,37 +4,7 @@ Find the sum of all numbers which are equal to the sum of the factorial of their
|
|||
Note: As 1! = 1 and 2! = 2 are not sums they are not included.
|
||||
"""
|
||||
|
||||
|
||||
def factorial(n: int) -> int:
|
||||
"""Return the factorial of n.
|
||||
>>> factorial(5)
|
||||
120
|
||||
>>> factorial(1)
|
||||
1
|
||||
>>> factorial(0)
|
||||
1
|
||||
>>> factorial(-1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: n must be >= 0
|
||||
>>> factorial(1.1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: n must be exact integer
|
||||
"""
|
||||
|
||||
if not n >= 0:
|
||||
raise ValueError("n must be >= 0")
|
||||
if int(n) != n:
|
||||
raise ValueError("n must be exact integer")
|
||||
if n + 1 == n: # catch a value like 1e300
|
||||
raise OverflowError("n too large")
|
||||
result = 1
|
||||
factor = 2
|
||||
while factor <= n:
|
||||
result *= factor
|
||||
factor += 1
|
||||
return result
|
||||
from math import factorial
|
||||
|
||||
|
||||
def sum_of_digit_factorial(n: int) -> int:
|
||||
|
@ -45,7 +15,7 @@ def sum_of_digit_factorial(n: int) -> int:
|
|||
>>> sum_of_digit_factorial(0)
|
||||
1
|
||||
"""
|
||||
return sum(factorial(int(digit)) for digit in str(n))
|
||||
return sum(factorial(int(char)) for char in str(n))
|
||||
|
||||
|
||||
def compute() -> int:
|
||||
|
@ -56,12 +26,9 @@ def compute() -> int:
|
|||
>>> compute()
|
||||
40730
|
||||
"""
|
||||
return sum(
|
||||
num
|
||||
for num in range(3, 7 * factorial(9) + 1)
|
||||
if sum_of_digit_factorial(num) == num
|
||||
)
|
||||
limit = 7 * factorial(9) + 1
|
||||
return sum(i for i in range(3, limit) if sum_of_digit_factorial(i) == i)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(compute())
|
||||
print(f"{compute()} = ")
|
||||
|
|
1
project_euler/problem_45/__init__.py
Normal file
1
project_euler/problem_45/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
#
|
57
project_euler/problem_45/sol1.py
Normal file
57
project_euler/problem_45/sol1.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
"""
|
||||
Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:
|
||||
Triangle T(n) = (n * (n + 1)) / 2 1, 3, 6, 10, 15, ...
|
||||
Pentagonal P(n) = (n * (3 * n − 1)) / 2 1, 5, 12, 22, 35, ...
|
||||
Hexagonal H(n) = n * (2 * n − 1) 1, 6, 15, 28, 45, ...
|
||||
It can be verified that T(285) = P(165) = H(143) = 40755.
|
||||
|
||||
Find the next triangle number that is also pentagonal and hexagonal.
|
||||
All trinagle numbers are hexagonal numbers.
|
||||
T(2n-1) = n * (2 * n - 1) = H(n)
|
||||
So we shall check only for hexagonal numbers which are also pentagonal.
|
||||
"""
|
||||
|
||||
|
||||
def hexagonal_num(n: int) -> int:
|
||||
"""
|
||||
Returns nth hexagonal number
|
||||
>>> hexagonal_num(143)
|
||||
40755
|
||||
>>> hexagonal_num(21)
|
||||
861
|
||||
>>> hexagonal_num(10)
|
||||
190
|
||||
"""
|
||||
return n * (2 * n - 1)
|
||||
|
||||
|
||||
def is_pentagonal(n: int) -> bool:
|
||||
"""
|
||||
Returns True if n is pentagonal, False otherwise.
|
||||
>>> is_pentagonal(330)
|
||||
True
|
||||
>>> is_pentagonal(7683)
|
||||
False
|
||||
>>> is_pentagonal(2380)
|
||||
True
|
||||
"""
|
||||
root = (1 + 24 * n) ** 0.5
|
||||
return ((1 + root) / 6) % 1 == 0
|
||||
|
||||
|
||||
def compute_num(start: int = 144) -> int:
|
||||
"""
|
||||
Returns the next number which is traingular, pentagonal and hexagonal.
|
||||
>>> compute_num(144)
|
||||
1533776805
|
||||
"""
|
||||
n = start
|
||||
num = hexagonal_num(n)
|
||||
while not is_pentagonal(num):
|
||||
n += 1
|
||||
num = hexagonal_num(n)
|
||||
return num
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{compute_num(144)} = ")
|
Loading…
Reference in New Issue
Block a user