mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 13:31:07 +00:00
Merge pull request #278 from daniel-s-ingram/master
Solution to Problem 21
This commit is contained in:
commit
4045f05b6b
42
Project Euler/Problem 21/sol1.py
Normal file
42
Project Euler/Problem 21/sol1.py
Normal file
|
@ -0,0 +1,42 @@
|
||||||
|
#-.- coding: latin-1 -.-
|
||||||
|
from __future__ import print_function
|
||||||
|
from math import sqrt
|
||||||
|
'''
|
||||||
|
Amicable Numbers
|
||||||
|
Problem 21
|
||||||
|
|
||||||
|
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
|
||||||
|
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
|
||||||
|
|
||||||
|
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
|
||||||
|
|
||||||
|
Evaluate the sum of all the amicable numbers under 10000.
|
||||||
|
'''
|
||||||
|
try:
|
||||||
|
xrange #Python 2
|
||||||
|
except NameError:
|
||||||
|
xrange = range #Python 3
|
||||||
|
|
||||||
|
def sum_of_divisors(n):
|
||||||
|
total = 0
|
||||||
|
for i in xrange(1, int(sqrt(n)+1)):
|
||||||
|
if n%i == 0 and i != sqrt(n):
|
||||||
|
total += i + n//i
|
||||||
|
elif i == sqrt(n):
|
||||||
|
total += i
|
||||||
|
|
||||||
|
return total-n
|
||||||
|
|
||||||
|
sums = []
|
||||||
|
total = 0
|
||||||
|
|
||||||
|
for i in xrange(1, 10000):
|
||||||
|
n = sum_of_divisors(i)
|
||||||
|
|
||||||
|
if n < len(sums):
|
||||||
|
if sums[n-1] == i:
|
||||||
|
total += n + i
|
||||||
|
|
||||||
|
sums.append(n)
|
||||||
|
|
||||||
|
print(total)
|
35
Project Euler/Problem 76/sol1.py
Normal file
35
Project Euler/Problem 76/sol1.py
Normal file
|
@ -0,0 +1,35 @@
|
||||||
|
from __future__ import print_function
|
||||||
|
'''
|
||||||
|
Counting Summations
|
||||||
|
Problem 76
|
||||||
|
|
||||||
|
It is possible to write five as a sum in exactly six different ways:
|
||||||
|
|
||||||
|
4 + 1
|
||||||
|
3 + 2
|
||||||
|
3 + 1 + 1
|
||||||
|
2 + 2 + 1
|
||||||
|
2 + 1 + 1 + 1
|
||||||
|
1 + 1 + 1 + 1 + 1
|
||||||
|
|
||||||
|
How many different ways can one hundred be written as a sum of at least two positive integers?
|
||||||
|
'''
|
||||||
|
try:
|
||||||
|
xrange #Python 2
|
||||||
|
except NameError:
|
||||||
|
xrange = range #Python 3
|
||||||
|
|
||||||
|
def partition(m):
|
||||||
|
memo = [[0 for _ in xrange(m)] for _ in xrange(m+1)]
|
||||||
|
for i in xrange(m+1):
|
||||||
|
memo[i][0] = 1
|
||||||
|
|
||||||
|
for n in xrange(m+1):
|
||||||
|
for k in xrange(1, m):
|
||||||
|
memo[n][k] += memo[n][k-1]
|
||||||
|
if n > k:
|
||||||
|
memo[n][k] += memo[n-k-1][k]
|
||||||
|
|
||||||
|
return (memo[m][m-1] - 1)
|
||||||
|
|
||||||
|
print(partition(100))
|
Loading…
Reference in New Issue
Block a user