mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
add gaussian filter algorithm and lena.jpg (#955)
This commit is contained in:
parent
05fc7f8a33
commit
408c5deb3a
53
digital_image_processing/filters/gaussian_filter.py
Normal file
53
digital_image_processing/filters/gaussian_filter.py
Normal file
|
@ -0,0 +1,53 @@
|
||||||
|
"""
|
||||||
|
Implementation of gaussian filter algorithm
|
||||||
|
"""
|
||||||
|
from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey
|
||||||
|
from numpy import pi, mgrid, exp, square, zeros, ravel, dot, uint8
|
||||||
|
|
||||||
|
|
||||||
|
def gen_gaussian_kernel(k_size, sigma):
|
||||||
|
center = k_size // 2
|
||||||
|
x, y = mgrid[0-center:k_size-center, 0-center:k_size-center]
|
||||||
|
g = 1/(2*pi*sigma) * exp(-(square(x) + square(y))/(2*square(sigma)))
|
||||||
|
return g
|
||||||
|
|
||||||
|
|
||||||
|
def gaussian_filter(image, k_size, sigma):
|
||||||
|
height, width = image.shape[0], image.shape[1]
|
||||||
|
# dst image height and width
|
||||||
|
dst_height = height-k_size+1
|
||||||
|
dst_width = width-k_size+1
|
||||||
|
|
||||||
|
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
|
||||||
|
image_array = zeros((dst_height*dst_width, k_size*k_size))
|
||||||
|
row = 0
|
||||||
|
for i in range(0, dst_height):
|
||||||
|
for j in range(0, dst_width):
|
||||||
|
window = ravel(image[i:i + k_size, j:j + k_size])
|
||||||
|
image_array[row, :] = window
|
||||||
|
row += 1
|
||||||
|
|
||||||
|
# turn the kernel into shape(k*k, 1)
|
||||||
|
gaussian_kernel = gen_gaussian_kernel(k_size, sigma)
|
||||||
|
filter_array = ravel(gaussian_kernel)
|
||||||
|
|
||||||
|
# reshape and get the dst image
|
||||||
|
dst = dot(image_array, filter_array).reshape(dst_height, dst_width).astype(uint8)
|
||||||
|
|
||||||
|
return dst
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# read original image
|
||||||
|
img = imread(r'../image_data/lena.jpg')
|
||||||
|
# turn image in gray scale value
|
||||||
|
gray = cvtColor(img, COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
# get values with two different mask size
|
||||||
|
gaussian3x3 = gaussian_filter(gray, 3, sigma=1)
|
||||||
|
gaussian5x5 = gaussian_filter(gray, 5, sigma=0.8)
|
||||||
|
|
||||||
|
# show result images
|
||||||
|
imshow('gaussian filter with 3x3 mask', gaussian3x3)
|
||||||
|
imshow('gaussian filter with 5x5 mask', gaussian5x5)
|
||||||
|
waitKey()
|
|
@ -28,7 +28,7 @@ def median_filter(gray_img, mask=3):
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# read original image
|
# read original image
|
||||||
img = imread('lena.jpg')
|
img = imread('../image_data/lena.jpg')
|
||||||
# turn image in gray scale value
|
# turn image in gray scale value
|
||||||
gray = cvtColor(img, COLOR_BGR2GRAY)
|
gray = cvtColor(img, COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
|
BIN
digital_image_processing/image_data/lena.jpg
Normal file
BIN
digital_image_processing/image_data/lena.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 102 KiB |
Loading…
Reference in New Issue
Block a user