mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
add graphs/ant_colony_optimization_algorithms.py (#11163)
* add ant_colonyant_colony_optimization_algorithms.py * Modify details * Modify type annotation * Add tests for KeyError, IndexError, StopIteration, etc. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
5898b9603b
commit
4151a13b57
226
graphs/ant_colony_optimization_algorithms.py
Normal file
226
graphs/ant_colony_optimization_algorithms.py
Normal file
|
@ -0,0 +1,226 @@
|
|||
"""
|
||||
Use an ant colony optimization algorithm to solve the travelling salesman problem (TSP)
|
||||
which asks the following question:
|
||||
"Given a list of cities and the distances between each pair of cities, what is the
|
||||
shortest possible route that visits each city exactly once and returns to the origin
|
||||
city?"
|
||||
|
||||
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
|
||||
https://en.wikipedia.org/wiki/Travelling_salesman_problem
|
||||
|
||||
Author: Clark
|
||||
"""
|
||||
|
||||
import copy
|
||||
import random
|
||||
|
||||
cities = {
|
||||
0: [0, 0],
|
||||
1: [0, 5],
|
||||
2: [3, 8],
|
||||
3: [8, 10],
|
||||
4: [12, 8],
|
||||
5: [12, 4],
|
||||
6: [8, 0],
|
||||
7: [6, 2],
|
||||
}
|
||||
|
||||
|
||||
def main(
|
||||
cities: dict[int, list[int]],
|
||||
ants_num: int,
|
||||
iterations_num: int,
|
||||
pheromone_evaporation: float,
|
||||
alpha: float,
|
||||
beta: float,
|
||||
q: float, # Pheromone system parameters Q,which is a constant
|
||||
) -> tuple[list[int], float]:
|
||||
"""
|
||||
Ant colony algorithm main function
|
||||
>>> main(cities=cities, ants_num=10, iterations_num=20,
|
||||
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
||||
([0, 1, 2, 3, 4, 5, 6, 7, 0], 37.909778143828696)
|
||||
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5,
|
||||
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
||||
([0, 1, 0], 5.656854249492381)
|
||||
>>> main(cities={0: [0, 0], 1: [2, 2], 4: [4, 4]}, ants_num=5, iterations_num=5,
|
||||
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
IndexError: list index out of range
|
||||
>>> main(cities={}, ants_num=5, iterations_num=5,
|
||||
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
StopIteration
|
||||
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=0, iterations_num=5,
|
||||
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
||||
([], inf)
|
||||
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=0,
|
||||
... pheromone_evaporation=0.7, alpha=1.0, beta=5.0, q=10)
|
||||
([], inf)
|
||||
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5,
|
||||
... pheromone_evaporation=1, alpha=1.0, beta=5.0, q=10)
|
||||
([0, 1, 0], 5.656854249492381)
|
||||
>>> main(cities={0: [0, 0], 1: [2, 2]}, ants_num=5, iterations_num=5,
|
||||
... pheromone_evaporation=0, alpha=1.0, beta=5.0, q=10)
|
||||
([0, 1, 0], 5.656854249492381)
|
||||
"""
|
||||
# Initialize the pheromone matrix
|
||||
cities_num = len(cities)
|
||||
pheromone = [[1.0] * cities_num] * cities_num
|
||||
|
||||
best_path: list[int] = []
|
||||
best_distance = float("inf")
|
||||
for _ in range(iterations_num):
|
||||
ants_route = []
|
||||
for _ in range(ants_num):
|
||||
unvisited_cities = copy.deepcopy(cities)
|
||||
current_city = {next(iter(cities.keys())): next(iter(cities.values()))}
|
||||
del unvisited_cities[next(iter(current_city.keys()))]
|
||||
ant_route = [next(iter(current_city.keys()))]
|
||||
while unvisited_cities:
|
||||
current_city, unvisited_cities = city_select(
|
||||
pheromone, current_city, unvisited_cities, alpha, beta
|
||||
)
|
||||
ant_route.append(next(iter(current_city.keys())))
|
||||
ant_route.append(0)
|
||||
ants_route.append(ant_route)
|
||||
|
||||
pheromone, best_path, best_distance = pheromone_update(
|
||||
pheromone,
|
||||
cities,
|
||||
pheromone_evaporation,
|
||||
ants_route,
|
||||
q,
|
||||
best_path,
|
||||
best_distance,
|
||||
)
|
||||
return best_path, best_distance
|
||||
|
||||
|
||||
def distance(city1: list[int], city2: list[int]) -> float:
|
||||
"""
|
||||
Calculate the distance between two coordinate points
|
||||
>>> distance([0, 0], [3, 4] )
|
||||
5.0
|
||||
>>> distance([0, 0], [-3, 4] )
|
||||
5.0
|
||||
>>> distance([0, 0], [-3, -4] )
|
||||
5.0
|
||||
"""
|
||||
return (((city1[0] - city2[0]) ** 2) + ((city1[1] - city2[1]) ** 2)) ** 0.5
|
||||
|
||||
|
||||
def pheromone_update(
|
||||
pheromone: list[list[float]],
|
||||
cities: dict[int, list[int]],
|
||||
pheromone_evaporation: float,
|
||||
ants_route: list[list[int]],
|
||||
q: float, # Pheromone system parameters Q,which is a constant
|
||||
best_path: list[int],
|
||||
best_distance: float,
|
||||
) -> tuple[list[list[float]], list[int], float]:
|
||||
"""
|
||||
Update pheromones on the route and update the best route
|
||||
>>>
|
||||
>>> pheromone_update(pheromone=[[1.0, 1.0], [1.0, 1.0]],
|
||||
... cities={0: [0,0], 1: [2,2]}, pheromone_evaporation=0.7,
|
||||
... ants_route=[[0, 1, 0]], q=10, best_path=[],
|
||||
... best_distance=float("inf"))
|
||||
([[0.7, 4.235533905932737], [4.235533905932737, 0.7]], [0, 1, 0], 5.656854249492381)
|
||||
>>> pheromone_update(pheromone=[],
|
||||
... cities={0: [0,0], 1: [2,2]}, pheromone_evaporation=0.7,
|
||||
... ants_route=[[0, 1, 0]], q=10, best_path=[],
|
||||
... best_distance=float("inf"))
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
IndexError: list index out of range
|
||||
>>> pheromone_update(pheromone=[[1.0, 1.0], [1.0, 1.0]],
|
||||
... cities={}, pheromone_evaporation=0.7,
|
||||
... ants_route=[[0, 1, 0]], q=10, best_path=[],
|
||||
... best_distance=float("inf"))
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
KeyError: 0
|
||||
"""
|
||||
for a in range(len(cities)): # Update the volatilization of pheromone on all routes
|
||||
for b in range(len(cities)):
|
||||
pheromone[a][b] *= pheromone_evaporation
|
||||
for ant_route in ants_route:
|
||||
total_distance = 0.0
|
||||
for i in range(len(ant_route) - 1): # Calculate total distance
|
||||
total_distance += distance(cities[ant_route[i]], cities[ant_route[i + 1]])
|
||||
delta_pheromone = q / total_distance
|
||||
for i in range(len(ant_route) - 1): # Update pheromones
|
||||
pheromone[ant_route[i]][ant_route[i + 1]] += delta_pheromone
|
||||
pheromone[ant_route[i + 1]][ant_route[i]] = pheromone[ant_route[i]][
|
||||
ant_route[i + 1]
|
||||
]
|
||||
|
||||
if total_distance < best_distance:
|
||||
best_path = ant_route
|
||||
best_distance = total_distance
|
||||
|
||||
return pheromone, best_path, best_distance
|
||||
|
||||
|
||||
def city_select(
|
||||
pheromone: list[list[float]],
|
||||
current_city: dict[int, list[int]],
|
||||
unvisited_cities: dict[int, list[int]],
|
||||
alpha: float,
|
||||
beta: float,
|
||||
) -> tuple[dict[int, list[int]], dict[int, list[int]]]:
|
||||
"""
|
||||
Choose the next city for ants
|
||||
>>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={0: [0, 0]},
|
||||
... unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0)
|
||||
({1: [2, 2]}, {})
|
||||
>>> city_select(pheromone=[], current_city={0: [0,0]},
|
||||
... unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
IndexError: list index out of range
|
||||
>>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={},
|
||||
... unvisited_cities={1: [2, 2]}, alpha=1.0, beta=5.0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
StopIteration
|
||||
>>> city_select(pheromone=[[1.0, 1.0], [1.0, 1.0]], current_city={0: [0, 0]},
|
||||
... unvisited_cities={}, alpha=1.0, beta=5.0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
IndexError: list index out of range
|
||||
"""
|
||||
probabilities = []
|
||||
for city in unvisited_cities:
|
||||
city_distance = distance(
|
||||
unvisited_cities[city], next(iter(current_city.values()))
|
||||
)
|
||||
probability = (pheromone[city][next(iter(current_city.keys()))] ** alpha) * (
|
||||
(1 / city_distance) ** beta
|
||||
)
|
||||
probabilities.append(probability)
|
||||
|
||||
chosen_city_i = random.choices(
|
||||
list(unvisited_cities.keys()), weights=probabilities
|
||||
)[0]
|
||||
chosen_city = {chosen_city_i: unvisited_cities[chosen_city_i]}
|
||||
del unvisited_cities[next(iter(chosen_city.keys()))]
|
||||
return chosen_city, unvisited_cities
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
best_path, best_distance = main(
|
||||
cities=cities,
|
||||
ants_num=10,
|
||||
iterations_num=20,
|
||||
pheromone_evaporation=0.7,
|
||||
alpha=1.0,
|
||||
beta=5.0,
|
||||
q=10,
|
||||
)
|
||||
|
||||
print(f"{best_path = }")
|
||||
print(f"{best_distance = }")
|
Loading…
Reference in New Issue
Block a user