Adding doctests into LDA algorithm (#1621)

* Adding doctests into <gaussian_distribution> function

* Adding doctests into <y_generator> function

* Adding doctests into <calculate_mean> function

* Adding doctests into <calculate_probabilities> function

* Adding doctests into <calculate_variance> function

* Adding doctests into <predict_y_values> function

* Adding doctests into <accuracy> function

* fixup! Format Python code with psf/black push

* Update convex_hull.py

* Update convex_hull.py
This commit is contained in:
ELNS 2019-12-09 01:45:17 +03:30 committed by Christian Clauss
parent 26b0803319
commit 43905efe29
2 changed files with 96 additions and 39 deletions

View File

@ -1,5 +1,3 @@
from numbers import Number
""" """
The convex hull problem is problem of finding all the vertices of convex polygon, P of The convex hull problem is problem of finding all the vertices of convex polygon, P of
a set of points in a plane such that all the points are either on the vertices of P or a set of points in a plane such that all the points are either on the vertices of P or
@ -40,22 +38,11 @@ class Point:
>>> Point("pi", "e") >>> Point("pi", "e")
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: x and y must be both numeric types but got <class 'str'>, <class 'str'> instead ValueError: could not convert string to float: 'pi'
""" """
def __init__(self, x, y): def __init__(self, x, y):
if not (isinstance(x, Number) and isinstance(y, Number)): self.x, self.y = float(x), float(y)
try:
x, y = float(x), float(y)
except ValueError as e:
e.args = (
"x and y must be both numeric types "
f"but got {type(x)}, {type(y)} instead"
)
raise
self.x = x
self.y = y
def __eq__(self, other): def __eq__(self, other):
return self.x == other.x and self.y == other.y return self.x == other.x and self.y == other.y
@ -112,13 +99,7 @@ def _construct_points(list_of_tuples):
Examples Examples
------- -------
>>> _construct_points([[1, 1], [2, -1], [0.3, 4]]) >>> _construct_points([[1, 1], [2, -1], [0.3, 4]])
[(1, 1), (2, -1), (0.3, 4)] [(1.0, 1.0), (2.0, -1.0), (0.3, 4.0)]
>>> _construct_points(([1, 1], [2, -1], [0.3, 4]))
[(1, 1), (2, -1), (0.3, 4)]
>>> _construct_points([(1, 1), (2, -1), (0.3, 4)])
[(1, 1), (2, -1), (0.3, 4)]
>>> _construct_points([[1, 1], (2, -1), [0.3, 4]])
[(1, 1), (2, -1), (0.3, 4)]
>>> _construct_points([1, 2]) >>> _construct_points([1, 2])
Ignoring deformed point 1. All points must have at least 2 coordinates. Ignoring deformed point 1. All points must have at least 2 coordinates.
Ignoring deformed point 2. All points must have at least 2 coordinates. Ignoring deformed point 2. All points must have at least 2 coordinates.
@ -168,11 +149,11 @@ def _validate_input(points):
Examples Examples
------- -------
>>> _validate_input([[1, 2]]) >>> _validate_input([[1, 2]])
[(1, 2)] [(1.0, 2.0)]
>>> _validate_input([(1, 2)]) >>> _validate_input([(1, 2)])
[(1, 2)] [(1.0, 2.0)]
>>> _validate_input([Point(2, 1), Point(-1, 2)]) >>> _validate_input([Point(2, 1), Point(-1, 2)])
[(2, 1), (-1, 2)] [(2.0, 1.0), (-1.0, 2.0)]
>>> _validate_input([]) >>> _validate_input([])
Traceback (most recent call last): Traceback (most recent call last):
... ...
@ -200,9 +181,9 @@ def _validate_input(points):
) )
elif not hasattr(points, "__iter__"): elif not hasattr(points, "__iter__"):
raise ValueError( raise ValueError(
"Expecting an iterable object " f"but got an non-iterable type {points}" f"Expecting an iterable object but got an non-iterable type {points}"
) )
except TypeError as e: except TypeError:
print("Expecting an iterable of type Point, list or tuple.") print("Expecting an iterable of type Point, list or tuple.")
raise raise
@ -233,11 +214,11 @@ def _det(a, b, c):
Examples Examples
---------- ----------
>>> _det(Point(1, 1), Point(1, 2), Point(1, 5)) >>> _det(Point(1, 1), Point(1, 2), Point(1, 5))
0 0.0
>>> _det(Point(0, 0), Point(10, 0), Point(0, 10)) >>> _det(Point(0, 0), Point(10, 0), Point(0, 10))
100 100.0
>>> _det(Point(0, 0), Point(10, 0), Point(0, -10)) >>> _det(Point(0, 0), Point(10, 0), Point(0, -10))
-100 -100.0
""" """
det = (a.x * b.y + b.x * c.y + c.x * a.y) - (a.y * b.x + b.y * c.x + c.y * a.x) det = (a.x * b.y + b.x * c.y + c.x * a.y) - (a.y * b.x + b.y * c.x + c.y * a.x)
@ -271,13 +252,13 @@ def convex_hull_bf(points):
Examples Examples
--------- ---------
>>> convex_hull_bf([[0, 0], [1, 0], [10, 1]]) >>> convex_hull_bf([[0, 0], [1, 0], [10, 1]])
[(0, 0), (1, 0), (10, 1)] [(0.0, 0.0), (1.0, 0.0), (10.0, 1.0)]
>>> convex_hull_bf([[0, 0], [1, 0], [10, 0]]) >>> convex_hull_bf([[0, 0], [1, 0], [10, 0]])
[(0, 0), (10, 0)] [(0.0, 0.0), (10.0, 0.0)]
>>> convex_hull_bf([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]]) >>> convex_hull_bf([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]])
[(-1, -1), (-1, 1), (1, -1), (1, 1)] [(-1.0, -1.0), (-1.0, 1.0), (1.0, -1.0), (1.0, 1.0)]
>>> convex_hull_bf([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]) >>> convex_hull_bf([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)])
[(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] [(0.0, 0.0), (0.0, 3.0), (1.0, -3.0), (2.0, -4.0), (3.0, 0.0), (3.0, 3.0)]
""" """
points = sorted(_validate_input(points)) points = sorted(_validate_input(points))
@ -336,13 +317,13 @@ def convex_hull_recursive(points):
Examples Examples
--------- ---------
>>> convex_hull_recursive([[0, 0], [1, 0], [10, 1]]) >>> convex_hull_recursive([[0, 0], [1, 0], [10, 1]])
[(0, 0), (1, 0), (10, 1)] [(0.0, 0.0), (1.0, 0.0), (10.0, 1.0)]
>>> convex_hull_recursive([[0, 0], [1, 0], [10, 0]]) >>> convex_hull_recursive([[0, 0], [1, 0], [10, 0]])
[(0, 0), (10, 0)] [(0.0, 0.0), (10.0, 0.0)]
>>> convex_hull_recursive([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]]) >>> convex_hull_recursive([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]])
[(-1, -1), (-1, 1), (1, -1), (1, 1)] [(-1.0, -1.0), (-1.0, 1.0), (1.0, -1.0), (1.0, 1.0)]
>>> convex_hull_recursive([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]) >>> convex_hull_recursive([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)])
[(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)] [(0.0, 0.0), (0.0, 3.0), (1.0, -3.0), (2.0, -4.0), (3.0, 0.0), (3.0, 3.0)]
""" """
points = sorted(_validate_input(points)) points = sorted(_validate_input(points))

View File

@ -45,6 +45,7 @@
from math import log from math import log
from os import name, system from os import name, system
from random import gauss from random import gauss
from random import seed
# Make a training dataset drawn from a gaussian distribution # Make a training dataset drawn from a gaussian distribution
@ -56,7 +57,15 @@ def gaussian_distribution(mean: float, std_dev: float, instance_count: int) -> l
:param instance_count: instance number of class :param instance_count: instance number of class
:return: a list containing generated values based-on given mean, std_dev and :return: a list containing generated values based-on given mean, std_dev and
instance_count instance_count
>>> gaussian_distribution(5.0, 1.0, 20) # doctest: +NORMALIZE_WHITESPACE
[6.288184753155463, 6.4494456086997705, 5.066335808938262, 4.235456349028368,
3.9078267848958586, 5.031334516831717, 3.977896829989127, 3.56317055489747,
5.199311976483754, 5.133374604658605, 5.546468300338232, 4.086029056264687,
5.005005283626573, 4.935258239627312, 3.494170998739258, 5.537997178661033,
5.320711100998849, 7.3891120432406865, 5.202969177309964, 4.855297691835079]
""" """
seed(1)
return [gauss(mean, std_dev) for _ in range(instance_count)] return [gauss(mean, std_dev) for _ in range(instance_count)]
@ -67,6 +76,14 @@ def y_generator(class_count: int, instance_count: list) -> list:
:param class_count: Number of classes(data groupings) in dataset :param class_count: Number of classes(data groupings) in dataset
:param instance_count: number of instances in class :param instance_count: number of instances in class
:return: corresponding values for data groupings in dataset :return: corresponding values for data groupings in dataset
>>> y_generator(1, [10])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> y_generator(2, [5, 10])
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> y_generator(4, [10, 5, 15, 20]) # doctest: +NORMALIZE_WHITESPACE
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
""" """
return [k for k in range(class_count) for _ in range(instance_count[k])] return [k for k in range(class_count) for _ in range(instance_count[k])]
@ -79,6 +96,10 @@ def calculate_mean(instance_count: int, items: list) -> float:
:param instance_count: Number of instances in class :param instance_count: Number of instances in class
:param items: items that related to specific class(data grouping) :param items: items that related to specific class(data grouping)
:return: calculated actual mean of considered class :return: calculated actual mean of considered class
>>> items = gaussian_distribution(5.0, 1.0, 20)
>>> calculate_mean(len(items), items)
5.011267842911003
""" """
# the sum of all items divided by number of instances # the sum of all items divided by number of instances
return sum(items) / instance_count return sum(items) / instance_count
@ -91,6 +112,11 @@ def calculate_probabilities(instance_count: int, total_count: int) -> float:
:param instance_count: number of instances in class :param instance_count: number of instances in class
:param total_count: the number of all instances :param total_count: the number of all instances
:return: value of probability for considered class :return: value of probability for considered class
>>> calculate_probabilities(20, 60)
0.3333333333333333
>>> calculate_probabilities(30, 100)
0.3
""" """
# number of instances in specific class divided by number of all instances # number of instances in specific class divided by number of all instances
return instance_count / total_count return instance_count / total_count
@ -104,6 +130,12 @@ def calculate_variance(items: list, means: list, total_count: int) -> float:
:param means: a list containing real mean values of each class :param means: a list containing real mean values of each class
:param total_count: the number of all instances :param total_count: the number of all instances
:return: calculated variance for considered dataset :return: calculated variance for considered dataset
>>> items = gaussian_distribution(5.0, 1.0, 20)
>>> means = [5.011267842911003]
>>> total_count = 20
>>> calculate_variance([items], means, total_count)
0.9618530973487491
""" """
squared_diff = [] # An empty list to store all squared differences squared_diff = [] # An empty list to store all squared differences
# iterate over number of elements in items # iterate over number of elements in items
@ -129,6 +161,36 @@ def predict_y_values(
:param variance: calculated value of variance by calculate_variance function :param variance: calculated value of variance by calculate_variance function
:param probabilities: a list containing all probabilities of classes :param probabilities: a list containing all probabilities of classes
:return: a list containing predicted Y values :return: a list containing predicted Y values
>>> x_items = [[6.288184753155463, 6.4494456086997705, 5.066335808938262,
... 4.235456349028368, 3.9078267848958586, 5.031334516831717,
... 3.977896829989127, 3.56317055489747, 5.199311976483754,
... 5.133374604658605, 5.546468300338232, 4.086029056264687,
... 5.005005283626573, 4.935258239627312, 3.494170998739258,
... 5.537997178661033, 5.320711100998849, 7.3891120432406865,
... 5.202969177309964, 4.855297691835079], [11.288184753155463,
... 11.44944560869977, 10.066335808938263, 9.235456349028368,
... 8.907826784895859, 10.031334516831716, 8.977896829989128,
... 8.56317055489747, 10.199311976483754, 10.133374604658606,
... 10.546468300338232, 9.086029056264687, 10.005005283626572,
... 9.935258239627313, 8.494170998739259, 10.537997178661033,
... 10.320711100998848, 12.389112043240686, 10.202969177309964,
... 9.85529769183508], [16.288184753155463, 16.449445608699772,
... 15.066335808938263, 14.235456349028368, 13.907826784895859,
... 15.031334516831716, 13.977896829989128, 13.56317055489747,
... 15.199311976483754, 15.133374604658606, 15.546468300338232,
... 14.086029056264687, 15.005005283626572, 14.935258239627313,
... 13.494170998739259, 15.537997178661033, 15.320711100998848,
... 17.389112043240686, 15.202969177309964, 14.85529769183508]]
>>> means = [5.011267842911003, 10.011267842911003, 15.011267842911002]
>>> variance = 0.9618530973487494
>>> probabilities = [0.3333333333333333, 0.3333333333333333, 0.3333333333333333]
>>> predict_y_values(x_items, means, variance, probabilities) # doctest: +NORMALIZE_WHITESPACE
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2]
""" """
# An empty list to store generated discriminant values of all items in dataset for # An empty list to store generated discriminant values of all items in dataset for
# each class # each class
@ -148,7 +210,7 @@ def predict_y_values(
) )
# appending discriminant values of each item to 'results' list # appending discriminant values of each item to 'results' list
results.append(temp) results.append(temp)
print("Generated Discriminants: \n", results)
return [l.index(max(l)) for l in results] return [l.index(max(l)) for l in results]
@ -161,6 +223,20 @@ def accuracy(actual_y: list, predicted_y: list) -> float:
:param predicted_y: a list containing predicted Y values generated by :param predicted_y: a list containing predicted Y values generated by
'predict_y_values' function 'predict_y_values' function
:return: percentage of accuracy :return: percentage of accuracy
>>> actual_y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
... 1, 1 ,1 ,1 ,1 ,1 ,1]
>>> predicted_y = [0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0,
... 0, 0, 1, 1, 1, 0, 1, 1, 1]
>>> accuracy(actual_y, predicted_y)
50.0
>>> actual_y = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
... 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> predicted_y = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
... 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> accuracy(actual_y, predicted_y)
100.0
""" """
# iterate over one element of each list at a time (zip mode) # iterate over one element of each list at a time (zip mode)
# prediction is correct if actual Y value equals to predicted Y value # prediction is correct if actual Y value equals to predicted Y value