More matrix algorithms (#745)

* added matrix minor

* added matrix determinant

* added inverse,scalar multiply, identity, transpose
This commit is contained in:
RayCurse 2019-03-27 13:50:43 -04:00 committed by John Law
parent 8b8a6d881c
commit 441b82a95f

View File

@ -10,6 +10,8 @@ def add(matrix_a, matrix_b):
matrix_c.append(list_1) matrix_c.append(list_1)
return matrix_c return matrix_c
def scalarMultiply(matrix , n):
return [[x * n for x in row] for row in matrix]
def multiply(matrix_a, matrix_b): def multiply(matrix_a, matrix_b):
matrix_c = [] matrix_c = []
@ -24,13 +26,50 @@ def multiply(matrix_a, matrix_b):
matrix_c.append(list_1) matrix_c.append(list_1)
return matrix_c return matrix_c
def identity(n):
return [[int(row == column) for column in range(n)] for row in range(n)]
def transpose(matrix):
return map(list , zip(*matrix))
def minor(matrix, row, column):
minor = matrix[:row] + matrix[row + 1:]
minor = [row[:column] + row[column + 1:] for row in minor]
return minor
def determinant(matrix):
if len(matrix) == 1: return matrix[0][0]
res = 0
for x in range(len(matrix)):
res += matrix[0][x] * determinant(minor(matrix , 0 , x)) * (-1) ** x
return res
def inverse(matrix):
det = determinant(matrix)
if det == 0: return None
matrixMinor = [[] for _ in range(len(matrix))]
for i in range(len(matrix)):
for j in range(len(matrix)):
matrixMinor[i].append(determinant(minor(matrix , i , j)))
cofactors = [[x * (-1) ** (row + col) for col, x in enumerate(matrixMinor[row])] for row in range(len(matrix))]
adjugate = transpose(cofactors)
return scalarMultiply(adjugate , 1/det)
def main(): def main():
matrix_a = [[12, 10], [3, 9]] matrix_a = [[12, 10], [3, 9]]
matrix_b = [[3, 4], [7, 4]] matrix_b = [[3, 4], [7, 4]]
matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]]
matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]]
print(add(matrix_a, matrix_b)) print(add(matrix_a, matrix_b))
print(multiply(matrix_a, matrix_b)) print(multiply(matrix_a, matrix_b))
print(identity(5))
print(minor(matrix_c , 1 , 2))
print(determinant(matrix_b))
print(inverse(matrix_d))
if __name__ == '__main__': if __name__ == '__main__':
main() main()