mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
More matrix algorithms (#745)
* added matrix minor * added matrix determinant * added inverse,scalar multiply, identity, transpose
This commit is contained in:
parent
8b8a6d881c
commit
441b82a95f
|
@ -10,6 +10,8 @@ def add(matrix_a, matrix_b):
|
|||
matrix_c.append(list_1)
|
||||
return matrix_c
|
||||
|
||||
def scalarMultiply(matrix , n):
|
||||
return [[x * n for x in row] for row in matrix]
|
||||
|
||||
def multiply(matrix_a, matrix_b):
|
||||
matrix_c = []
|
||||
|
@ -24,13 +26,50 @@ def multiply(matrix_a, matrix_b):
|
|||
matrix_c.append(list_1)
|
||||
return matrix_c
|
||||
|
||||
def identity(n):
|
||||
return [[int(row == column) for column in range(n)] for row in range(n)]
|
||||
|
||||
def transpose(matrix):
|
||||
return map(list , zip(*matrix))
|
||||
|
||||
def minor(matrix, row, column):
|
||||
minor = matrix[:row] + matrix[row + 1:]
|
||||
minor = [row[:column] + row[column + 1:] for row in minor]
|
||||
return minor
|
||||
|
||||
def determinant(matrix):
|
||||
if len(matrix) == 1: return matrix[0][0]
|
||||
|
||||
res = 0
|
||||
for x in range(len(matrix)):
|
||||
res += matrix[0][x] * determinant(minor(matrix , 0 , x)) * (-1) ** x
|
||||
return res
|
||||
|
||||
def inverse(matrix):
|
||||
det = determinant(matrix)
|
||||
if det == 0: return None
|
||||
|
||||
matrixMinor = [[] for _ in range(len(matrix))]
|
||||
for i in range(len(matrix)):
|
||||
for j in range(len(matrix)):
|
||||
matrixMinor[i].append(determinant(minor(matrix , i , j)))
|
||||
|
||||
cofactors = [[x * (-1) ** (row + col) for col, x in enumerate(matrixMinor[row])] for row in range(len(matrix))]
|
||||
adjugate = transpose(cofactors)
|
||||
return scalarMultiply(adjugate , 1/det)
|
||||
|
||||
def main():
|
||||
matrix_a = [[12, 10], [3, 9]]
|
||||
matrix_b = [[3, 4], [7, 4]]
|
||||
matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]]
|
||||
matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]]
|
||||
|
||||
print(add(matrix_a, matrix_b))
|
||||
print(multiply(matrix_a, matrix_b))
|
||||
|
||||
print(identity(5))
|
||||
print(minor(matrix_c , 1 , 2))
|
||||
print(determinant(matrix_b))
|
||||
print(inverse(matrix_d))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
Loading…
Reference in New Issue
Block a user