mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Fix grammar and spelling mistakes in sequential_minimum_optimization.py (#11427)
This commit is contained in:
parent
41a1cdf38d
commit
446742387e
|
@ -1,11 +1,9 @@
|
|||
"""
|
||||
Implementation of sequential minimal optimization (SMO) for support vector machines
|
||||
(SVM).
|
||||
Sequential minimal optimization (SMO) for support vector machines (SVM)
|
||||
|
||||
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
|
||||
programming (QP) problem that arises during the training of support vector
|
||||
machines.
|
||||
It was invented by John Platt in 1998.
|
||||
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
|
||||
programming (QP) problem that arises during the training of SVMs. It was invented by
|
||||
John Platt in 1998.
|
||||
|
||||
Input:
|
||||
0: type: numpy.ndarray.
|
||||
|
@ -124,8 +122,7 @@ class SmoSVM:
|
|||
b_old = self._b
|
||||
self._b = b
|
||||
|
||||
# 4: update error value,here we only calculate those non-bound samples'
|
||||
# error
|
||||
# 4: update error, here we only calculate the error for non-bound samples
|
||||
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
|
||||
for s in self.unbound:
|
||||
if s in (i1, i2):
|
||||
|
@ -136,7 +133,7 @@ class SmoSVM:
|
|||
+ (self._b - b_old)
|
||||
)
|
||||
|
||||
# if i1 or i2 is non-bound,update there error value to zero
|
||||
# if i1 or i2 is non-bound, update their error value to zero
|
||||
if self._is_unbound(i1):
|
||||
self._error[i1] = 0
|
||||
if self._is_unbound(i2):
|
||||
|
@ -161,7 +158,7 @@ class SmoSVM:
|
|||
results.append(result)
|
||||
return np.array(results)
|
||||
|
||||
# Check if alpha violate KKT condition
|
||||
# Check if alpha violates the KKT condition
|
||||
def _check_obey_kkt(self, index):
|
||||
alphas = self.alphas
|
||||
tol = self._tol
|
||||
|
@ -172,20 +169,19 @@ class SmoSVM:
|
|||
|
||||
# Get value calculated from kernel function
|
||||
def _k(self, i1, i2):
|
||||
# for test samples,use Kernel function
|
||||
# for test samples, use kernel function
|
||||
if isinstance(i2, np.ndarray):
|
||||
return self.Kernel(self.samples[i1], i2)
|
||||
# for train samples,Kernel values have been saved in matrix
|
||||
# for training samples, kernel values have been saved in matrix
|
||||
else:
|
||||
return self._K_matrix[i1, i2]
|
||||
|
||||
# Get sample's error
|
||||
# Get error for sample
|
||||
def _e(self, index):
|
||||
"""
|
||||
Two cases:
|
||||
1:Sample[index] is non-bound,Fetch error from list: _error
|
||||
2:sample[index] is bound,Use predicted value deduct true value: g(xi) - yi
|
||||
|
||||
1: Sample[index] is non-bound, fetch error from list: _error
|
||||
2: sample[index] is bound, use predicted value minus true value: g(xi) - yi
|
||||
"""
|
||||
# get from error data
|
||||
if self._is_unbound(index):
|
||||
|
@ -196,7 +192,7 @@ class SmoSVM:
|
|||
yi = self.tags[index]
|
||||
return gx - yi
|
||||
|
||||
# Calculate Kernel matrix of all possible i1,i2 ,saving time
|
||||
# Calculate kernel matrix of all possible i1, i2, saving time
|
||||
def _calculate_k_matrix(self):
|
||||
k_matrix = np.zeros([self.length, self.length])
|
||||
for i in self._all_samples:
|
||||
|
@ -206,7 +202,7 @@ class SmoSVM:
|
|||
)
|
||||
return k_matrix
|
||||
|
||||
# Predict test sample's tag
|
||||
# Predict tag for test sample
|
||||
def _predict(self, sample):
|
||||
k = self._k
|
||||
predicted_value = (
|
||||
|
@ -222,30 +218,31 @@ class SmoSVM:
|
|||
|
||||
# Choose alpha1 and alpha2
|
||||
def _choose_alphas(self):
|
||||
locis = yield from self._choose_a1()
|
||||
if not locis:
|
||||
loci = yield from self._choose_a1()
|
||||
if not loci:
|
||||
return None
|
||||
return locis
|
||||
return loci
|
||||
|
||||
def _choose_a1(self):
|
||||
"""
|
||||
Choose first alpha ;steps:
|
||||
1:First loop over all sample
|
||||
2:Second loop over all non-bound samples till all non-bound samples does not
|
||||
voilate kkt condition.
|
||||
3:Repeat this two process endlessly,till all samples does not voilate kkt
|
||||
condition samples after first loop.
|
||||
Choose first alpha
|
||||
Steps:
|
||||
1: First loop over all samples
|
||||
2: Second loop over all non-bound samples until no non-bound samples violate
|
||||
the KKT condition.
|
||||
3: Repeat these two processes until no samples violate the KKT condition
|
||||
after the first loop.
|
||||
"""
|
||||
while True:
|
||||
all_not_obey = True
|
||||
# all sample
|
||||
print("scanning all sample!")
|
||||
print("Scanning all samples!")
|
||||
for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
|
||||
all_not_obey = False
|
||||
yield from self._choose_a2(i1)
|
||||
|
||||
# non-bound sample
|
||||
print("scanning non-bound sample!")
|
||||
print("Scanning non-bound samples!")
|
||||
while True:
|
||||
not_obey = True
|
||||
for i1 in [
|
||||
|
@ -256,20 +253,21 @@ class SmoSVM:
|
|||
not_obey = False
|
||||
yield from self._choose_a2(i1)
|
||||
if not_obey:
|
||||
print("all non-bound samples fit the KKT condition!")
|
||||
print("All non-bound samples satisfy the KKT condition!")
|
||||
break
|
||||
if all_not_obey:
|
||||
print("all samples fit the KKT condition! Optimization done!")
|
||||
print("All samples satisfy the KKT condition!")
|
||||
break
|
||||
return False
|
||||
|
||||
def _choose_a2(self, i1):
|
||||
"""
|
||||
Choose the second alpha by using heuristic algorithm ;steps:
|
||||
1: Choose alpha2 which gets the maximum step size (|E1 - E2|).
|
||||
2: Start in a random point,loop over all non-bound samples till alpha1 and
|
||||
Choose the second alpha using a heuristic algorithm
|
||||
Steps:
|
||||
1: Choose alpha2 that maximizes the step size (|E1 - E2|).
|
||||
2: Start in a random point, loop over all non-bound samples till alpha1 and
|
||||
alpha2 are optimized.
|
||||
3: Start in a random point,loop over all samples till alpha1 and alpha2 are
|
||||
3: Start in a random point, loop over all samples till alpha1 and alpha2 are
|
||||
optimized.
|
||||
"""
|
||||
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
|
||||
|
@ -306,7 +304,7 @@ class SmoSVM:
|
|||
if i1 == i2:
|
||||
return None, None
|
||||
|
||||
# calculate L and H which bound the new alpha2
|
||||
# calculate L and H which bound the new alpha2
|
||||
s = y1 * y2
|
||||
if s == -1:
|
||||
l, h = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1) # noqa: E741
|
||||
|
@ -320,7 +318,7 @@ class SmoSVM:
|
|||
k22 = k(i2, i2)
|
||||
k12 = k(i1, i2)
|
||||
|
||||
# select the new alpha2 which could get the minimal objectives
|
||||
# select the new alpha2 which could achieve the minimal objectives
|
||||
if (eta := k11 + k22 - 2.0 * k12) > 0.0:
|
||||
a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
|
||||
# a2_new has a boundary
|
||||
|
@ -335,7 +333,7 @@ class SmoSVM:
|
|||
l1 = a1 + s * (a2 - l)
|
||||
h1 = a1 + s * (a2 - h)
|
||||
|
||||
# way 1
|
||||
# Method 1
|
||||
f1 = y1 * (e1 + b) - a1 * k(i1, i1) - s * a2 * k(i1, i2)
|
||||
f2 = y2 * (e2 + b) - a2 * k(i2, i2) - s * a1 * k(i1, i2)
|
||||
ol = (
|
||||
|
@ -353,9 +351,8 @@ class SmoSVM:
|
|||
+ s * h * h1 * k(i1, i2)
|
||||
)
|
||||
"""
|
||||
# way 2
|
||||
Use objective function check which alpha2 new could get the minimal
|
||||
objectives
|
||||
Method 2: Use objective function to check which alpha2_new could achieve the
|
||||
minimal objectives
|
||||
"""
|
||||
if ol < (oh - self._eps):
|
||||
a2_new = l
|
||||
|
@ -375,7 +372,7 @@ class SmoSVM:
|
|||
|
||||
return a1_new, a2_new
|
||||
|
||||
# Normalise data using min_max way
|
||||
# Normalize data using min-max method
|
||||
def _norm(self, data):
|
||||
if self._init:
|
||||
self._min = np.min(data, axis=0)
|
||||
|
@ -424,7 +421,7 @@ class Kernel:
|
|||
|
||||
def _check(self):
|
||||
if self._kernel == self._rbf and self.gamma < 0:
|
||||
raise ValueError("gamma value must greater than 0")
|
||||
raise ValueError("gamma value must be non-negative")
|
||||
|
||||
def _get_kernel(self, kernel_name):
|
||||
maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf}
|
||||
|
@ -444,27 +441,27 @@ def count_time(func):
|
|||
start_time = time.time()
|
||||
func(*args, **kwargs)
|
||||
end_time = time.time()
|
||||
print(f"smo algorithm cost {end_time - start_time} seconds")
|
||||
print(f"SMO algorithm cost {end_time - start_time} seconds")
|
||||
|
||||
return call_func
|
||||
|
||||
|
||||
@count_time
|
||||
def test_cancel_data():
|
||||
print("Hello!\nStart test svm by smo algorithm!")
|
||||
def test_cancer_data():
|
||||
print("Hello!\nStart test SVM using the SMO algorithm!")
|
||||
# 0: download dataset and load into pandas' dataframe
|
||||
if not os.path.exists(r"cancel_data.csv"):
|
||||
if not os.path.exists(r"cancer_data.csv"):
|
||||
request = urllib.request.Request( # noqa: S310
|
||||
CANCER_DATASET_URL,
|
||||
headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"},
|
||||
)
|
||||
response = urllib.request.urlopen(request) # noqa: S310
|
||||
content = response.read().decode("utf-8")
|
||||
with open(r"cancel_data.csv", "w") as f:
|
||||
with open(r"cancer_data.csv", "w") as f:
|
||||
f.write(content)
|
||||
|
||||
data = pd.read_csv(
|
||||
"cancel_data.csv",
|
||||
"cancer_data.csv",
|
||||
header=None,
|
||||
dtype={0: str}, # Assuming the first column contains string data
|
||||
)
|
||||
|
@ -479,14 +476,14 @@ def test_cancel_data():
|
|||
train_data, test_data = samples[:328, :], samples[328:, :]
|
||||
test_tags, test_samples = test_data[:, 0], test_data[:, 1:]
|
||||
|
||||
# 3: choose kernel function,and set initial alphas to zero(optional)
|
||||
mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
|
||||
# 3: choose kernel function, and set initial alphas to zero (optional)
|
||||
my_kernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
|
||||
al = np.zeros(train_data.shape[0])
|
||||
|
||||
# 4: calculating best alphas using SMO algorithm and predict test_data samples
|
||||
mysvm = SmoSVM(
|
||||
train=train_data,
|
||||
kernel_func=mykernel,
|
||||
kernel_func=my_kernel,
|
||||
alpha_list=al,
|
||||
cost=0.4,
|
||||
b=0.0,
|
||||
|
@ -501,30 +498,30 @@ def test_cancel_data():
|
|||
for i in range(test_tags.shape[0]):
|
||||
if test_tags[i] == predict[i]:
|
||||
score += 1
|
||||
print(f"\nall: {test_num}\nright: {score}\nfalse: {test_num - score}")
|
||||
print(f"\nAll: {test_num}\nCorrect: {score}\nIncorrect: {test_num - score}")
|
||||
print(f"Rough Accuracy: {score / test_tags.shape[0]}")
|
||||
|
||||
|
||||
def test_demonstration():
|
||||
# change stdout
|
||||
print("\nStart plot,please wait!!!")
|
||||
print("\nStarting plot, please wait!")
|
||||
sys.stdout = open(os.devnull, "w")
|
||||
|
||||
ax1 = plt.subplot2grid((2, 2), (0, 0))
|
||||
ax2 = plt.subplot2grid((2, 2), (0, 1))
|
||||
ax3 = plt.subplot2grid((2, 2), (1, 0))
|
||||
ax4 = plt.subplot2grid((2, 2), (1, 1))
|
||||
ax1.set_title("linear svm,cost:0.1")
|
||||
ax1.set_title("Linear SVM, cost = 0.1")
|
||||
test_linear_kernel(ax1, cost=0.1)
|
||||
ax2.set_title("linear svm,cost:500")
|
||||
ax2.set_title("Linear SVM, cost = 500")
|
||||
test_linear_kernel(ax2, cost=500)
|
||||
ax3.set_title("rbf kernel svm,cost:0.1")
|
||||
ax3.set_title("RBF kernel SVM, cost = 0.1")
|
||||
test_rbf_kernel(ax3, cost=0.1)
|
||||
ax4.set_title("rbf kernel svm,cost:500")
|
||||
ax4.set_title("RBF kernel SVM, cost = 500")
|
||||
test_rbf_kernel(ax4, cost=500)
|
||||
|
||||
sys.stdout = sys.__stdout__
|
||||
print("Plot done!!!")
|
||||
print("Plot done!")
|
||||
|
||||
|
||||
def test_linear_kernel(ax, cost):
|
||||
|
@ -535,10 +532,10 @@ def test_linear_kernel(ax, cost):
|
|||
scaler = StandardScaler()
|
||||
train_x_scaled = scaler.fit_transform(train_x, train_y)
|
||||
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
|
||||
mykernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
|
||||
my_kernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
|
||||
mysvm = SmoSVM(
|
||||
train=train_data,
|
||||
kernel_func=mykernel,
|
||||
kernel_func=my_kernel,
|
||||
cost=cost,
|
||||
tolerance=0.001,
|
||||
auto_norm=False,
|
||||
|
@ -555,10 +552,10 @@ def test_rbf_kernel(ax, cost):
|
|||
scaler = StandardScaler()
|
||||
train_x_scaled = scaler.fit_transform(train_x, train_y)
|
||||
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
|
||||
mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
|
||||
my_kernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
|
||||
mysvm = SmoSVM(
|
||||
train=train_data,
|
||||
kernel_func=mykernel,
|
||||
kernel_func=my_kernel,
|
||||
cost=cost,
|
||||
tolerance=0.001,
|
||||
auto_norm=False,
|
||||
|
@ -571,11 +568,11 @@ def plot_partition_boundary(
|
|||
model, train_data, ax, resolution=100, colors=("b", "k", "r")
|
||||
):
|
||||
"""
|
||||
We can not get the optimum w of our kernel svm model which is different from linear
|
||||
svm. For this reason, we generate randomly distributed points with high desity and
|
||||
prediced values of these points are calculated by using our trained model. Then we
|
||||
could use this prediced values to draw contour map.
|
||||
And this contour map can represent svm's partition boundary.
|
||||
We cannot get the optimal w of our kernel SVM model, which is different from a
|
||||
linear SVM. For this reason, we generate randomly distributed points with high
|
||||
density, and predicted values of these points are calculated using our trained
|
||||
model. Then we could use this predicted values to draw contour map, and this contour
|
||||
map represents the SVM's partition boundary.
|
||||
"""
|
||||
train_data_x = train_data[:, 1]
|
||||
train_data_y = train_data[:, 2]
|
||||
|
@ -620,6 +617,6 @@ def plot_partition_boundary(
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_cancel_data()
|
||||
test_cancer_data()
|
||||
test_demonstration()
|
||||
plt.show()
|
||||
|
|
Loading…
Reference in New Issue
Block a user