mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-21 21:27:36 +00:00
Rename variables
This commit is contained in:
parent
818448b05d
commit
4522258980
@ -1,8 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
# ruff: noqa: N803,N806
|
def cholesky_decomposition(a: np.ndarray) -> np.ndarray:
|
||||||
def cholesky_decomposition(A: np.ndarray) -> np.ndarray:
|
|
||||||
"""Return a Cholesky decomposition of the matrix A.
|
"""Return a Cholesky decomposition of the matrix A.
|
||||||
|
|
||||||
The Cholesky decomposition decomposes the square, positive definite matrix A
|
The Cholesky decomposition decomposes the square, positive definite matrix A
|
||||||
@ -26,7 +25,7 @@ def cholesky_decomposition(A: np.ndarray) -> np.ndarray:
|
|||||||
>>> np.allclose(np.tril(L), L)
|
>>> np.allclose(np.tril(L), L)
|
||||||
True
|
True
|
||||||
|
|
||||||
The Cholesky decomposition can be used to solve the system of equations A x = y.
|
The Cholesky decomposition can be used to solve the linear system A x = y.
|
||||||
|
|
||||||
>>> x_true = np.array([1, 2, 3], dtype=float)
|
>>> x_true = np.array([1, 2, 3], dtype=float)
|
||||||
>>> y = A @ x_true
|
>>> y = A @ x_true
|
||||||
@ -43,28 +42,30 @@ def cholesky_decomposition(A: np.ndarray) -> np.ndarray:
|
|||||||
True
|
True
|
||||||
"""
|
"""
|
||||||
|
|
||||||
assert A.shape[0] == A.shape[1], f"Matrix A is not square, {A.shape=}"
|
assert a.shape[0] == a.shape[1], f"Matrix A is not square, {a.shape=}"
|
||||||
assert np.allclose(A, A.T), "Matrix A must be symmetric"
|
assert np.allclose(a, a.T), "Matrix A must be symmetric"
|
||||||
|
|
||||||
n = A.shape[0]
|
n = a.shape[0]
|
||||||
L = np.tril(A)
|
lower_triangle = np.tril(a)
|
||||||
|
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
for j in range(i + 1):
|
for j in range(i + 1):
|
||||||
L[i, j] -= np.sum(L[i, :j] * L[j, :j])
|
lower_triangle[i, j] -= np.sum(
|
||||||
|
lower_triangle[i, :j] * lower_triangle[j, :j]
|
||||||
|
)
|
||||||
|
|
||||||
if i == j:
|
if i == j:
|
||||||
if L[i, i] <= 0:
|
if lower_triangle[i, i] <= 0:
|
||||||
raise ValueError("Matrix A is not positive definite")
|
raise ValueError("Matrix A is not positive definite")
|
||||||
|
|
||||||
L[i, i] = np.sqrt(L[i, i])
|
lower_triangle[i, i] = np.sqrt(lower_triangle[i, i])
|
||||||
else:
|
else:
|
||||||
L[i, j] /= L[j, j]
|
lower_triangle[i, j] /= lower_triangle[j, j]
|
||||||
|
|
||||||
return L
|
return lower_triangle
|
||||||
|
|
||||||
|
|
||||||
def solve_cholesky(L: np.ndarray, Y: np.ndarray) -> np.ndarray:
|
def solve_cholesky(lower_triangle: np.ndarray, y: np.ndarray) -> np.ndarray:
|
||||||
"""Given a Cholesky decomposition L L^T = A of a matrix A, solve the
|
"""Given a Cholesky decomposition L L^T = A of a matrix A, solve the
|
||||||
system of equations A X = Y where Y is either a matrix or a vector.
|
system of equations A X = Y where Y is either a matrix or a vector.
|
||||||
|
|
||||||
@ -75,32 +76,36 @@ def solve_cholesky(L: np.ndarray, Y: np.ndarray) -> np.ndarray:
|
|||||||
True
|
True
|
||||||
"""
|
"""
|
||||||
|
|
||||||
assert L.shape[0] == L.shape[1], f"Matrix L is not square, {L.shape=}"
|
assert (
|
||||||
assert np.allclose(np.tril(L), L), "Matrix L is not lower triangular"
|
lower_triangle.shape[0] == lower_triangle.shape[1]
|
||||||
|
), f"Matrix L is not square, {lower_triangle.shape=}"
|
||||||
|
assert np.allclose(
|
||||||
|
np.tril(lower_triangle), lower_triangle
|
||||||
|
), "Matrix L is not lower triangular"
|
||||||
|
|
||||||
# Handle vector case by reshaping to matrix and then flattening again
|
# Handle vector case by reshaping to matrix and then flattening again
|
||||||
if len(Y.shape) == 1:
|
if len(y.shape) == 1:
|
||||||
return solve_cholesky(L, Y.reshape(-1, 1)).ravel()
|
return solve_cholesky(lower_triangle, y.reshape(-1, 1)).ravel()
|
||||||
|
|
||||||
n = Y.shape[0]
|
n = y.shape[0]
|
||||||
|
|
||||||
# Solve L W = B for W
|
# Solve L W = B for W
|
||||||
W = Y.copy()
|
w = y.copy()
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
for j in range(i):
|
for j in range(i):
|
||||||
W[i] -= L[i, j] * W[j]
|
w[i] -= lower_triangle[i, j] * w[j]
|
||||||
|
|
||||||
W[i] /= L[i, i]
|
w[i] /= lower_triangle[i, i]
|
||||||
|
|
||||||
# Solve L^T X = W for X
|
# Solve L^T X = W for X
|
||||||
X = W
|
x = w
|
||||||
for i in reversed(range(n)):
|
for i in reversed(range(n)):
|
||||||
for j in range(i + 1, n):
|
for j in range(i + 1, n):
|
||||||
X[i] -= L[j, i] * X[j]
|
x[i] -= lower_triangle[j, i] * x[j]
|
||||||
|
|
||||||
X[i] /= L[i, i]
|
x[i] /= lower_triangle[i, i]
|
||||||
|
|
||||||
return X
|
return x
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
x
Reference in New Issue
Block a user