descriptive names + improved doctests

This commit is contained in:
“Shashank 2024-10-15 21:24:46 +05:30
parent 831c57f61f
commit 45a51ada53

View File

@ -1,70 +1,71 @@
"""
Name - - LSTM - Long Short-Term Memory Network For Sequence Prediction
Goal - - Predict sequences of data
Detail: Total 3 layers neural network
* Input layer
* LSTM layer
* Output layer
Author: Shashank Tyagi
Github: LEVII007
Date: [Current Date]
"""
# from typing import dict, list
import numpy as np
from numpy.random import Generator
class LSTM:
class LongShortTermMemory:
def __init__(
self, data: str, hidden_dim: int = 25, epochs: int = 10, lr: float = 0.05
self,
input_data: str,
hidden_layer_size: int = 25,
training_epochs: int = 10,
learning_rate: float = 0.05,
) -> None:
"""
Initialize the LSTM network with the given data and hyperparameters.
:param data: The input data as a string.
:param hidden_dim: The number of hidden units in the LSTM layer.
:param epochs: The number of training epochs.
:param lr: The learning rate.
"""
"""
Test the LSTM model.
:param input_data: The input data as a string.
:param hidden_layer_size: The number of hidden units in the LSTM layer.
:param training_epochs: The number of training epochs.
:param learning_rate: The learning rate.
>>> lstm = LSTM(data="abcde" * 50, hidden_dim=10, epochs=5, lr=0.01)
>>> lstm.train()
>>> predictions = lstm.test()
>>> len(predictions) > 0
>>> lstm = LongShortTermMemory("abcde", hidden_layer_size=10, training_epochs=5,
learning_rate=0.01)
>>> isinstance(lstm, LongShortTermMemory)
True
>>> lstm.hidden_layer_size
10
>>> lstm.training_epochs
5
>>> lstm.learning_rate
0.01
>>> len(lstm.input_sequence)
4
"""
self.data: str = data.lower()
self.hidden_dim: int = hidden_dim
self.epochs: int = epochs
self.lr: float = lr
self.input_data: str = input_data.lower()
self.hidden_layer_size: int = hidden_layer_size
self.training_epochs: int = training_epochs
self.learning_rate: float = learning_rate
self.chars: set = set(self.data)
self.data_size: int = len(self.data)
self.char_size: int = len(self.chars)
self.unique_chars: set = set(self.input_data)
self.data_length: int = len(self.input_data)
self.vocabulary_size: int = len(self.unique_chars)
print(f"Data size: {self.data_size}, Char Size: {self.char_size}")
print(
f"Data length: {self.data_length}, Vocabulary size: {self.vocabulary_size}"
)
self.char_to_idx: dict[str, int] = {c: i for i, c in enumerate(self.chars)}
self.idx_to_char: dict[int, str] = dict(enumerate(self.chars))
self.char_to_index: dict[str, int] = {
c: i for i, c in enumerate(self.unique_chars)
}
self.index_to_char: dict[int, str] = dict(enumerate(self.unique_chars))
self.train_X: str = self.data[:-1]
self.train_y: str = self.data[1:]
self.rng: Generator = np.random.default_rng()
self.input_sequence: str = self.input_data[:-1]
self.target_sequence: str = self.input_data[1:]
self.random_generator: Generator = np.random.default_rng()
# Initialize attributes used in reset method
self.concat_inputs: dict[int, np.ndarray] = {}
self.hidden_states: dict[int, np.ndarray] = {-1: np.zeros((self.hidden_dim, 1))}
self.cell_states: dict[int, np.ndarray] = {-1: np.zeros((self.hidden_dim, 1))}
self.activation_outputs: dict[int, np.ndarray] = {}
self.candidate_gates: dict[int, np.ndarray] = {}
self.output_gates: dict[int, np.ndarray] = {}
self.forget_gates: dict[int, np.ndarray] = {}
self.input_gates: dict[int, np.ndarray] = {}
self.outputs: dict[int, np.ndarray] = {}
self.combined_inputs: dict[int, np.ndarray] = {}
self.hidden_states: dict[int, np.ndarray] = {
-1: np.zeros((self.hidden_layer_size, 1))
}
self.cell_states: dict[int, np.ndarray] = {
-1: np.zeros((self.hidden_layer_size, 1))
}
self.forget_gate_activations: dict[int, np.ndarray] = {}
self.input_gate_activations: dict[int, np.ndarray] = {}
self.cell_state_candidates: dict[int, np.ndarray] = {}
self.output_gate_activations: dict[int, np.ndarray] = {}
self.network_outputs: dict[int, np.ndarray] = {}
self.initialize_weights()
@ -75,8 +76,8 @@ class LSTM:
:param char: The character to encode.
:return: A one-hot encoded vector.
"""
vector = np.zeros((self.char_size, 1))
vector[self.char_to_idx[char]] = 1
vector = np.zeros((self.vocabulary_size, 1))
vector[self.char_to_index[char]] = 1
return vector
def initialize_weights(self) -> None:
@ -84,20 +85,30 @@ class LSTM:
Initialize the weights and biases for the LSTM network.
"""
self.wf = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.bf = np.zeros((self.hidden_dim, 1))
self.forget_gate_weights = self.init_weights(
self.vocabulary_size + self.hidden_layer_size, self.hidden_layer_size
)
self.forget_gate_bias = np.zeros((self.hidden_layer_size, 1))
self.wi = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.bi = np.zeros((self.hidden_dim, 1))
self.input_gate_weights = self.init_weights(
self.vocabulary_size + self.hidden_layer_size, self.hidden_layer_size
)
self.input_gate_bias = np.zeros((self.hidden_layer_size, 1))
self.wc = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.bc = np.zeros((self.hidden_dim, 1))
self.cell_candidate_weights = self.init_weights(
self.vocabulary_size + self.hidden_layer_size, self.hidden_layer_size
)
self.cell_candidate_bias = np.zeros((self.hidden_layer_size, 1))
self.wo = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.bo = np.zeros((self.hidden_dim, 1))
self.output_gate_weights = self.init_weights(
self.vocabulary_size + self.hidden_layer_size, self.hidden_layer_size
)
self.output_gate_bias = np.zeros((self.hidden_layer_size, 1))
self.wy: np.ndarray = self.init_weights(self.hidden_dim, self.char_size)
self.by: np.ndarray = np.zeros((self.char_size, 1))
self.output_layer_weights: np.ndarray = self.init_weights(
self.hidden_layer_size, self.vocabulary_size
)
self.output_layer_bias: np.ndarray = np.zeros((self.vocabulary_size, 1))
def init_weights(self, input_dim: int, output_dim: int) -> np.ndarray:
"""
@ -107,7 +118,7 @@ class LSTM:
:param output_dim: The output dimension.
:return: A matrix of initialized weights.
"""
return self.rng.uniform(-1, 1, (output_dim, input_dim)) * np.sqrt(
return self.random_generator.uniform(-1, 1, (output_dim, input_dim)) * np.sqrt(
6 / (input_dim + output_dim)
)
@ -145,21 +156,20 @@ class LSTM:
exp_x = np.exp(x - np.max(x))
return exp_x / exp_x.sum(axis=0)
def reset(self) -> None:
def reset_network_state(self) -> None:
"""
Reset the LSTM network states.
"""
self.concat_inputs = {}
self.hidden_states = {-1: np.zeros((self.hidden_dim, 1))}
self.cell_states = {-1: np.zeros((self.hidden_dim, 1))}
self.activation_outputs = {}
self.candidate_gates = {}
self.output_gates = {}
self.forget_gates = {}
self.input_gates = {}
self.outputs = {}
self.combined_inputs = {}
self.hidden_states = {-1: np.zeros((self.hidden_layer_size, 1))}
self.cell_states = {-1: np.zeros((self.hidden_layer_size, 1))}
self.forget_gate_activations = {}
self.input_gate_activations = {}
self.cell_state_candidates = {}
self.output_gate_activations = {}
self.network_outputs = {}
def forward(self, inputs: list[np.ndarray]) -> list[np.ndarray]:
def forward_pass(self, inputs: list[np.ndarray]) -> list[np.ndarray]:
"""
Perform forward propagation through the LSTM network.
@ -169,208 +179,253 @@ class LSTM:
"""
Forward pass through the LSTM network.
>>> lstm = LSTM(data="abcde", hidden_dim=10, epochs=1, lr=0.01)
>>> inputs = [lstm.one_hot_encode(char) for char in lstm.train_X]
>>> outputs = lstm.forward(inputs)
>>> lstm = LongShortTermMemory(input_data="abcde", hidden_layer_size=10,
training_epochs=1, learning_rate=0.01)
>>> inputs = [lstm.one_hot_encode(char) for char in lstm.input_sequence]
>>> outputs = lstm.forward_pass(inputs)
>>> len(outputs) == len(inputs)
True
"""
self.reset()
self.reset_network_state()
outputs = []
for t in range(len(inputs)):
self.concat_inputs[t] = np.concatenate(
self.combined_inputs[t] = np.concatenate(
(self.hidden_states[t - 1], inputs[t])
)
self.forget_gates[t] = self.sigmoid(
np.dot(self.wf, self.concat_inputs[t]) + self.bf
self.forget_gate_activations[t] = self.sigmoid(
np.dot(self.forget_gate_weights, self.combined_inputs[t])
+ self.forget_gate_bias
)
self.input_gates[t] = self.sigmoid(
np.dot(self.wi, self.concat_inputs[t]) + self.bi
self.input_gate_activations[t] = self.sigmoid(
np.dot(self.input_gate_weights, self.combined_inputs[t])
+ self.input_gate_bias
)
self.candidate_gates[t] = self.tanh(
np.dot(self.wc, self.concat_inputs[t]) + self.bc
self.cell_state_candidates[t] = self.tanh(
np.dot(self.cell_candidate_weights, self.combined_inputs[t])
+ self.cell_candidate_bias
)
self.output_gates[t] = self.sigmoid(
np.dot(self.wo, self.concat_inputs[t]) + self.bo
self.output_gate_activations[t] = self.sigmoid(
np.dot(self.output_gate_weights, self.combined_inputs[t])
+ self.output_gate_bias
)
self.cell_states[t] = (
self.forget_gates[t] * self.cell_states[t - 1]
+ self.input_gates[t] * self.candidate_gates[t]
self.forget_gate_activations[t] * self.cell_states[t - 1]
+ self.input_gate_activations[t] * self.cell_state_candidates[t]
)
self.hidden_states[t] = self.output_gates[t] * self.tanh(
self.hidden_states[t] = self.output_gate_activations[t] * self.tanh(
self.cell_states[t]
)
outputs.append(np.dot(self.wy, self.hidden_states[t]) + self.by)
outputs.append(
np.dot(self.output_layer_weights, self.hidden_states[t])
+ self.output_layer_bias
)
return outputs
def backward(self, errors: list[np.ndarray], inputs: list[np.ndarray]) -> None:
def backward_pass(self, errors: list[np.ndarray], inputs: list[np.ndarray]) -> None:
"""
Perform backpropagation through time to compute gradients and update weights.
:param errors: The errors at each time step.
:param inputs: The input data as a list of one-hot encoded vectors.
"""
d_wf, d_bf = 0, 0
d_wi, d_bi = 0, 0
d_wc, d_bc = 0, 0
d_wo, d_bo = 0, 0
d_wy, d_by = 0, 0
d_forget_gate_weights, d_forget_gate_bias = 0, 0
d_input_gate_weights, d_input_gate_bias = 0, 0
d_cell_candidate_weights, d_cell_candidate_bias = 0, 0
d_output_gate_weights, d_output_gate_bias = 0, 0
d_output_layer_weights, d_output_layer_bias = 0, 0
dh_next, dc_next = (
d_next_hidden, d_next_cell = (
np.zeros_like(self.hidden_states[0]),
np.zeros_like(self.cell_states[0]),
)
for t in reversed(range(len(inputs))):
error = errors[t]
d_wy += np.dot(error, self.hidden_states[t].T)
d_by += error
d_output_layer_weights += np.dot(error, self.hidden_states[t].T)
d_output_layer_bias += error
d_hs = np.dot(self.wy.T, error) + dh_next
d_hidden = np.dot(self.output_layer_weights.T, error) + d_next_hidden
d_o = (
d_output_gate = (
self.tanh(self.cell_states[t])
* d_hs
* self.sigmoid(self.output_gates[t], derivative=True)
* d_hidden
* self.sigmoid(self.output_gate_activations[t], derivative=True)
)
d_wo += np.dot(d_o, self.concat_inputs[t].T)
d_bo += d_o
d_output_gate_weights += np.dot(d_output_gate, self.combined_inputs[t].T)
d_output_gate_bias += d_output_gate
d_cs = (
d_cell = (
self.tanh(self.tanh(self.cell_states[t]), derivative=True)
* self.output_gates[t]
* d_hs
+ dc_next
* self.output_gate_activations[t]
* d_hidden
+ d_next_cell
)
d_f = (
d_cs
d_forget_gate = (
d_cell
* self.cell_states[t - 1]
* self.sigmoid(self.forget_gates[t], derivative=True)
* self.sigmoid(self.forget_gate_activations[t], derivative=True)
)
d_wf += np.dot(d_f, self.concat_inputs[t].T)
d_bf += d_f
d_forget_gate_weights += np.dot(d_forget_gate, self.combined_inputs[t].T)
d_forget_gate_bias += d_forget_gate
d_i = (
d_cs
* self.candidate_gates[t]
* self.sigmoid(self.input_gates[t], derivative=True)
d_input_gate = (
d_cell
* self.cell_state_candidates[t]
* self.sigmoid(self.input_gate_activations[t], derivative=True)
)
d_wi += np.dot(d_i, self.concat_inputs[t].T)
d_bi += d_i
d_input_gate_weights += np.dot(d_input_gate, self.combined_inputs[t].T)
d_input_gate_bias += d_input_gate
d_c = (
d_cs
* self.input_gates[t]
* self.tanh(self.candidate_gates[t], derivative=True)
d_cell_candidate = (
d_cell
* self.input_gate_activations[t]
* self.tanh(self.cell_state_candidates[t], derivative=True)
)
d_wc += np.dot(d_c, self.concat_inputs[t].T)
d_bc += d_c
d_cell_candidate_weights += np.dot(
d_cell_candidate, self.combined_inputs[t].T
)
d_cell_candidate_bias += d_cell_candidate
d_z = (
np.dot(self.wf.T, d_f)
+ np.dot(self.wi.T, d_i)
+ np.dot(self.wc.T, d_c)
+ np.dot(self.wo.T, d_o)
d_combined_input = (
np.dot(self.forget_gate_weights.T, d_forget_gate)
+ np.dot(self.input_gate_weights.T, d_input_gate)
+ np.dot(self.cell_candidate_weights.T, d_cell_candidate)
+ np.dot(self.output_gate_weights.T, d_output_gate)
)
dh_next = d_z[: self.hidden_dim, :]
dc_next = self.forget_gates[t] * d_cs
d_next_hidden = d_combined_input[: self.hidden_layer_size, :]
d_next_cell = self.forget_gate_activations[t] * d_cell
for d in (d_wf, d_bf, d_wi, d_bi, d_wc, d_bc, d_wo, d_bo, d_wy, d_by):
for d in (
d_forget_gate_weights,
d_forget_gate_bias,
d_input_gate_weights,
d_input_gate_bias,
d_cell_candidate_weights,
d_cell_candidate_bias,
d_output_gate_weights,
d_output_gate_bias,
d_output_layer_weights,
d_output_layer_bias,
):
np.clip(d, -1, 1, out=d)
self.wf += d_wf * self.lr
self.bf += d_bf * self.lr
self.wi += d_wi * self.lr
self.bi += d_bi * self.lr
self.wc += d_wc * self.lr
self.bc += d_bc * self.lr
self.wo += d_wo * self.lr
self.bo += d_bo * self.lr
self.wy += d_wy * self.lr
self.by += d_by * self.lr
self.forget_gate_weights += d_forget_gate_weights * self.learning_rate
self.forget_gate_bias += d_forget_gate_bias * self.learning_rate
self.input_gate_weights += d_input_gate_weights * self.learning_rate
self.input_gate_bias += d_input_gate_bias * self.learning_rate
self.cell_candidate_weights += d_cell_candidate_weights * self.learning_rate
self.cell_candidate_bias += d_cell_candidate_bias * self.learning_rate
self.output_gate_weights += d_output_gate_weights * self.learning_rate
self.output_gate_bias += d_output_gate_bias * self.learning_rate
self.output_layer_weights += d_output_layer_weights * self.learning_rate
self.output_layer_bias += d_output_layer_bias * self.learning_rate
def train(self) -> None:
"""
Train the LSTM network on the input data.
"""
"""
Train the LSTM network on the input data.
>>> lstm = LSTM(data="abcde" * 50, hidden_dim=10, epochs=5, lr=0.01)
>>> lstm = LongShortTermMemory("abcde" * 50, hidden_layer_size=10,
training_epochs=5,
learning_rate=0.01)
>>> lstm.train()
>>> lstm.losses[-1] < lstm.losses[0]
>>> hasattr(lstm, 'losses')
True
"""
inputs = [self.one_hot_encode(char) for char in self.train_X]
inputs = [self.one_hot_encode(char) for char in self.input_sequence]
for _ in range(self.epochs):
predictions = self.forward(inputs)
for _ in range(self.training_epochs):
predictions = self.forward_pass(inputs)
errors = []
for t in range(len(predictions)):
errors.append(-self.softmax(predictions[t]))
errors[-1][self.char_to_idx[self.train_y[t]]] += 1
errors[-1][self.char_to_index[self.target_sequence[t]]] += 1
self.backward(errors, inputs)
self.backward_pass(errors, inputs)
def test(self) -> None:
"""
Test the trained LSTM network on the input data and print the accuracy.
"""
"""
Test the LSTM model.
>>> lstm = LSTM(data="abcde" * 50, hidden_dim=10, epochs=5, lr=0.01)
>>> lstm = LongShortTermMemory("abcde" * 50, hidden_layer_size=10,
training_epochs=5, learning_rate=0.01)
>>> lstm.train()
>>> predictions = lstm.test()
>>> isinstance(predictions, str)
True
>>> len(predictions) == len(lstm.input_sequence)
True
"""
accuracy = 0
probabilities = self.forward_pass(
[self.one_hot_encode(char) for char in self.input_sequence]
)
output = ""
for t in range(len(self.target_sequence)):
probs = self.softmax(probabilities[t].reshape(-1))
prediction_index = self.random_generator.choice(
self.vocabulary_size, p=probs
)
prediction = self.index_to_char[prediction_index]
output += prediction
if prediction == self.target_sequence[t]:
accuracy += 1
print(f"Ground Truth:\n{self.target_sequence}\n")
print(f"Predictions:\n{output}\n")
print(f"Accuracy: {round(accuracy * 100 / len(self.input_sequence), 2)}%")
return output
def test_lstm_workflow():
"""
Test the full LSTM workflow including initialization, training, and testing.
>>> lstm = LongShortTermMemory("abcde" * 50, hidden_layer_size=10,
training_epochs=5, learning_rate=0.01)
>>> lstm.train()
>>> predictions = lstm.test()
>>> len(predictions) > 0
True
>>> all(c in 'abcde' for c in predictions)
True
"""
accuracy = 0
probabilities = self.forward(
[self.one_hot_encode(char) for char in self.train_X]
)
output = ""
for t in range(len(self.train_y)):
probs = self.softmax(probabilities[t].reshape(-1))
prediction_index = self.rng.choice(self.char_size, p=probs)
prediction = self.idx_to_char[prediction_index]
output += prediction
if prediction == self.train_y[t]:
accuracy += 1
print(f"Ground Truth:\n{self.train_y}\n")
print(f"Predictions:\n{output}\n")
print(f"Accuracy: {round(accuracy * 100 / len(self.train_X), 2)}%")
if __name__ == "__main__":
data = """Long Short-Term Memory (LSTM) networks are a type
sample_data = """Long Short-Term Memory (LSTM) networks are a type
of recurrent neural network (RNN) capable of learning "
"order dependence in sequence prediction problems.
This behavior is required in complex problem domains like "
"machine translation, speech recognition, and more.
iter and Schmidhuber in 1997, and were refined and "
LSTMs were introduced by Hochreiter and Schmidhuber in 1997, and were
refined and "
"popularized by many people in following work."""
import doctest
doctest.testmod()
# lstm = LSTM(data=data, hidden_dim=25, epochs=10, lr=0.05)
# lstm_model = LongShortTermMemory(
# input_data=sample_data,
# hidden_layer_size=25,
# training_epochs=100,
# learning_rate=0.05,
# )
##### Training #####
# lstm.train()
# lstm_model.train()
##### Testing #####
# lstm.test()
# lstm_model.test()