codespell --quiet-level=2 (#1711)

* codespell --quiet-level=2

Suppress the BINARY FILE warnings

* fixup! Format Python code with psf/black push
This commit is contained in:
Christian Clauss 2020-01-23 17:21:51 +01:00 committed by John Law
parent 2cf7e8f994
commit 46ac50a28e
5 changed files with 37 additions and 26 deletions

View File

@ -10,5 +10,5 @@ jobs:
- uses: actions/setup-python@v1
- run: pip install codespell flake8
- run: |
SKIP="./.*,./other/dictionary.txt,./other/words,./project_euler/problem_22/p022_names.txt,*.bak,*.gif,*.jpeg,*.jpg,*.json,*.png,*.pyc"
codespell -L ans,fo,hist,iff,secant,tim --skip=$SKIP
SKIP="./.*,./other/dictionary.txt,./other/words,./project_euler/problem_22/p022_names.txt"
codespell -L ans,fo,hist,iff,secant,tim --skip=$SKIP --quiet-level=2

View File

@ -4,10 +4,13 @@ Approximates the area under the curve using the trapezoidal rule
from typing import Callable, Union
def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
steps: int = 100) -> float:
def trapezoidal_area(
fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
steps: int = 100,
) -> float:
"""
Treats curve as a collection of linear lines and sums the area of the
trapezium shape they form
@ -34,9 +37,9 @@ def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]],
for i in range(steps):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
x2 = (x_end - x_start)/steps + x1
x2 = (x_end - x_start) / steps + x1
fx2 = fnc(x2)
area += abs(fx2 + fx1) * (x2 - x1)/2
area += abs(fx2 + fx1) * (x2 - x1) / 2
# Increment step
x1 = x2
fx1 = fx2
@ -44,12 +47,13 @@ def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]],
if __name__ == "__main__":
def f(x):
return x**3 + x**2
return x ** 3 + x ** 2
print("f(x) = x^3 + x^2")
print("The area between the curve, x = -5, x = 5 and the x axis is:")
i = 10
while i <= 100000:
print(f"with {i} steps: {trapezoidal_area(f, -5, 5, i)}")
i*=10
i *= 10

View File

@ -24,7 +24,7 @@ def armstrong_number(n: int) -> bool:
"""
if not isinstance(n, int) or n < 1:
return False
# Initialization of sum and number of digits.
sum = 0
number_of_digits = 0
@ -37,7 +37,7 @@ def armstrong_number(n: int) -> bool:
temp = n
while temp > 0:
rem = temp % 10
sum += (rem ** number_of_digits)
sum += rem ** number_of_digits
temp //= 10
return n == sum
@ -50,7 +50,7 @@ def main():
print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.")
if __name__ == '__main__':
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,10 +1,13 @@
from typing import Callable, Union
import math as m
def line_length(fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
steps: int = 100) -> float:
def line_length(
fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
steps: int = 100,
) -> float:
"""
Approximates the arc length of a line segment by treating the curve as a
@ -48,10 +51,11 @@ def line_length(fnc: Callable[[Union[int, float]], Union[int, float]],
return length
if __name__ == "__main__":
def f(x):
return m.sin(10*x)
return m.sin(10 * x)
print("f(x) = sin(10 * x)")
print("The length of the curve from x = -10 to x = 10 is:")

View File

@ -4,10 +4,13 @@ Approximates the area under the curve using the trapezoidal rule
from typing import Callable, Union
def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
steps: int = 100) -> float:
def trapezoidal_area(
fnc: Callable[[Union[int, float]], Union[int, float]],
x_start: Union[int, float],
x_end: Union[int, float],
steps: int = 100,
) -> float:
"""
Treats curve as a collection of linear lines and sums the area of the
@ -39,9 +42,9 @@ def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]],
# Approximates small segments of curve as linear and solve
# for trapezoidal area
x2 = (x_end - x_start)/steps + x1
x2 = (x_end - x_start) / steps + x1
fx2 = fnc(x2)
area += abs(fx2 + fx1) * (x2 - x1)/2
area += abs(fx2 + fx1) * (x2 - x1) / 2
# Increment step
x1 = x2
@ -52,7 +55,7 @@ def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]],
if __name__ == "__main__":
def f(x):
return x**3
return x ** 3
print("f(x) = x^3")
print("The area between the curve, x = -10, x = 10 and the x axis is:")
@ -60,4 +63,4 @@ if __name__ == "__main__":
while i <= 100000:
area = trapezoidal_area(f, -5, 5, i)
print("with {} steps: {}".format(i, area))
i*=10
i *= 10