From 46df735cf48103ae0a400604762bf10208d5a6dc Mon Sep 17 00:00:00 2001 From: MadhavCode Date: Tue, 7 Jan 2020 14:47:35 +0530 Subject: [PATCH] New Code!!(Finding the N Possible Binary Search Tree and Binary Tree from Given N node Number) (#1663) * Code Upload * Code Upload * Delete n_possible_bst * Find the N Possible Binary Tree and Binary Tree from given Nth Number of Node. * Update in Test * Update and rename n_possible_bst.py to number_of_possible_binary_trees.py Co-authored-by: Christian Clauss --- .../number_of_possible_binary_trees.py | 102 ++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 data_structures/binary_tree/number_of_possible_binary_trees.py diff --git a/data_structures/binary_tree/number_of_possible_binary_trees.py b/data_structures/binary_tree/number_of_possible_binary_trees.py new file mode 100644 index 000000000..71670d969 --- /dev/null +++ b/data_structures/binary_tree/number_of_possible_binary_trees.py @@ -0,0 +1,102 @@ +""" +Hey, we are going to find an exciting number called Catalan number which is use to find +the number of possible binary search trees from tree of a given number of nodes. + +We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i) + +Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number +""" +""" +Our Contribution: +Basically we Create the 2 function: + 1. catalan_number(node_count: int) -> int + Returns the number of possible binary search trees for n nodes. + 2. binary_tree_count(node_count: int) -> int + Returns the number of possible binary trees for n nodes. +""" + + +def binomial_coefficient(n: int, k: int) -> int: + """ + Since Here we Find the Binomial Coefficient: + https://en.wikipedia.org/wiki/Binomial_coefficient + C(n,k) = n! / k!(n-k)! + :param n: 2 times of Number of nodes + :param k: Number of nodes + :return: Integer Value + + >>> binomial_coefficient(4, 2) + 6 + """ + result = 1 # To kept the Calculated Value + # Since C(n, k) = C(n, n-k) + if k > (n - k): + k = n - k + # Calculate C(n,k) + for i in range(k): + result *= n - i + result //= i + 1 + return result + + +def catalan_number(node_count: int) -> int: + """ + We can find Catalan number many ways but here we use Binomial Coefficent because it + does the job in O(n) + + return the Catalan number of n using 2nCn/(n+1). + :param n: number of nodes + :return: Catalan number of n nodes + + >>> catalan_number(5) + 42 + >>> catalan_number(6) + 132 + """ + return binomial_coefficient(2 * node_count, node_count) // (node_count + 1) + + +def factorial(n: int) -> int: + """ + Return the factorial of a number. + :param n: Number to find the Factorial of. + :return: Factorial of n. + + >>> import math + >>> all(factorial(i) == math.factorial(i) for i in range(10)) + True + >>> factorial(-5) # doctest: +ELLIPSIS + Traceback (most recent call last): + ... + ValueError: factorial() not defined for negative values + """ + if n < 0: + raise ValueError("factorial() not defined for negative values") + result = 1 + for i in range(1, n + 1): + result *= i + return result + + +def binary_tree_count(node_count: int) -> int: + """ + Return the number of possible of binary trees. + :param n: number of nodes + :return: Number of possilble binary trees + + >>> binary_tree_count(5) + 5040 + >>> binary_tree_count(6) + 95040 + """ + return catalan_number(node_count) * factorial(node_count) + + +if __name__ == "__main__": + node_count = int(input("Enter the number of nodes: ").strip() or 0) + if node_count <= 0: + raise ValueError("We need some nodes to work with.") + print( + f"Given {node_count} nodes, there are {binary_tree_count(node_count)} " + f"binary trees and {catalan_number(node_count)} binary search trees." + )