mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-07 18:10:55 +00:00
Merge branch 'TheAlgorithms:master' into master
This commit is contained in:
commit
48ca80fb21
|
@ -96,7 +96,7 @@ We want your work to be readable by others; therefore, we encourage you to note
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python3 -m pip install ruff # only required the first time
|
python3 -m pip install ruff # only required the first time
|
||||||
ruff .
|
ruff check
|
||||||
```
|
```
|
||||||
|
|
||||||
- Original code submission require docstrings or comments to describe your work.
|
- Original code submission require docstrings or comments to describe your work.
|
||||||
|
|
38
data_structures/stacks/lexicographical_numbers.py
Normal file
38
data_structures/stacks/lexicographical_numbers.py
Normal file
|
@ -0,0 +1,38 @@
|
||||||
|
from collections.abc import Iterator
|
||||||
|
|
||||||
|
|
||||||
|
def lexical_order(max_number: int) -> Iterator[int]:
|
||||||
|
"""
|
||||||
|
Generate numbers in lexical order from 1 to max_number.
|
||||||
|
|
||||||
|
>>> " ".join(map(str, lexical_order(13)))
|
||||||
|
'1 10 11 12 13 2 3 4 5 6 7 8 9'
|
||||||
|
>>> list(lexical_order(1))
|
||||||
|
[1]
|
||||||
|
>>> " ".join(map(str, lexical_order(20)))
|
||||||
|
'1 10 11 12 13 14 15 16 17 18 19 2 20 3 4 5 6 7 8 9'
|
||||||
|
>>> " ".join(map(str, lexical_order(25)))
|
||||||
|
'1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 3 4 5 6 7 8 9'
|
||||||
|
>>> list(lexical_order(12))
|
||||||
|
[1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||||
|
"""
|
||||||
|
|
||||||
|
stack = [1]
|
||||||
|
|
||||||
|
while stack:
|
||||||
|
num = stack.pop()
|
||||||
|
if num > max_number:
|
||||||
|
continue
|
||||||
|
|
||||||
|
yield num
|
||||||
|
if (num % 10) != 9:
|
||||||
|
stack.append(num + 1)
|
||||||
|
|
||||||
|
stack.append(num * 10)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
from doctest import testmod
|
||||||
|
|
||||||
|
testmod()
|
||||||
|
print(f"Numbers from 1 to 25 in lexical order: {list(lexical_order(26))}")
|
|
@ -28,6 +28,24 @@ def longest_common_subsequence(x: str, y: str):
|
||||||
(2, 'ph')
|
(2, 'ph')
|
||||||
>>> longest_common_subsequence("computer", "food")
|
>>> longest_common_subsequence("computer", "food")
|
||||||
(1, 'o')
|
(1, 'o')
|
||||||
|
>>> longest_common_subsequence("", "abc") # One string is empty
|
||||||
|
(0, '')
|
||||||
|
>>> longest_common_subsequence("abc", "") # Other string is empty
|
||||||
|
(0, '')
|
||||||
|
>>> longest_common_subsequence("", "") # Both strings are empty
|
||||||
|
(0, '')
|
||||||
|
>>> longest_common_subsequence("abc", "def") # No common subsequence
|
||||||
|
(0, '')
|
||||||
|
>>> longest_common_subsequence("abc", "abc") # Identical strings
|
||||||
|
(3, 'abc')
|
||||||
|
>>> longest_common_subsequence("a", "a") # Single character match
|
||||||
|
(1, 'a')
|
||||||
|
>>> longest_common_subsequence("a", "b") # Single character no match
|
||||||
|
(0, '')
|
||||||
|
>>> longest_common_subsequence("abcdef", "ace") # Interleaved subsequence
|
||||||
|
(3, 'ace')
|
||||||
|
>>> longest_common_subsequence("ABCD", "ACBD") # No repeated characters
|
||||||
|
(3, 'ABD')
|
||||||
"""
|
"""
|
||||||
# find the length of strings
|
# find the length of strings
|
||||||
|
|
||||||
|
|
113
searches/exponential_search.py
Normal file
113
searches/exponential_search.py
Normal file
|
@ -0,0 +1,113 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
Pure Python implementation of exponential search algorithm
|
||||||
|
|
||||||
|
For more information, see the Wikipedia page:
|
||||||
|
https://en.wikipedia.org/wiki/Exponential_search
|
||||||
|
|
||||||
|
For doctests run the following command:
|
||||||
|
python3 -m doctest -v exponential_search.py
|
||||||
|
|
||||||
|
For manual testing run:
|
||||||
|
python3 exponential_search.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
|
||||||
|
def binary_search_by_recursion(
|
||||||
|
sorted_collection: list[int], item: int, left: int = 0, right: int = -1
|
||||||
|
) -> int:
|
||||||
|
"""Pure implementation of binary search algorithm in Python using recursion
|
||||||
|
|
||||||
|
Be careful: the collection must be ascending sorted otherwise, the result will be
|
||||||
|
unpredictable.
|
||||||
|
|
||||||
|
:param sorted_collection: some ascending sorted collection with comparable items
|
||||||
|
:param item: item value to search
|
||||||
|
:param left: starting index for the search
|
||||||
|
:param right: ending index for the search
|
||||||
|
:return: index of the found item or -1 if the item is not found
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 0, 0, 4)
|
||||||
|
0
|
||||||
|
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 15, 0, 4)
|
||||||
|
4
|
||||||
|
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 5, 0, 4)
|
||||||
|
1
|
||||||
|
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 6, 0, 4)
|
||||||
|
-1
|
||||||
|
"""
|
||||||
|
if right < 0:
|
||||||
|
right = len(sorted_collection) - 1
|
||||||
|
if list(sorted_collection) != sorted(sorted_collection):
|
||||||
|
raise ValueError("sorted_collection must be sorted in ascending order")
|
||||||
|
if right < left:
|
||||||
|
return -1
|
||||||
|
|
||||||
|
midpoint = left + (right - left) // 2
|
||||||
|
|
||||||
|
if sorted_collection[midpoint] == item:
|
||||||
|
return midpoint
|
||||||
|
elif sorted_collection[midpoint] > item:
|
||||||
|
return binary_search_by_recursion(sorted_collection, item, left, midpoint - 1)
|
||||||
|
else:
|
||||||
|
return binary_search_by_recursion(sorted_collection, item, midpoint + 1, right)
|
||||||
|
|
||||||
|
|
||||||
|
def exponential_search(sorted_collection: list[int], item: int) -> int:
|
||||||
|
"""
|
||||||
|
Pure implementation of an exponential search algorithm in Python.
|
||||||
|
For more information, refer to:
|
||||||
|
https://en.wikipedia.org/wiki/Exponential_search
|
||||||
|
|
||||||
|
Be careful: the collection must be ascending sorted, otherwise the result will be
|
||||||
|
unpredictable.
|
||||||
|
|
||||||
|
:param sorted_collection: some ascending sorted collection with comparable items
|
||||||
|
:param item: item value to search
|
||||||
|
:return: index of the found item or -1 if the item is not found
|
||||||
|
|
||||||
|
The time complexity of this algorithm is O(log i) where i is the index of the item.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> exponential_search([0, 5, 7, 10, 15], 0)
|
||||||
|
0
|
||||||
|
>>> exponential_search([0, 5, 7, 10, 15], 15)
|
||||||
|
4
|
||||||
|
>>> exponential_search([0, 5, 7, 10, 15], 5)
|
||||||
|
1
|
||||||
|
>>> exponential_search([0, 5, 7, 10, 15], 6)
|
||||||
|
-1
|
||||||
|
"""
|
||||||
|
if list(sorted_collection) != sorted(sorted_collection):
|
||||||
|
raise ValueError("sorted_collection must be sorted in ascending order")
|
||||||
|
|
||||||
|
if sorted_collection[0] == item:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
bound = 1
|
||||||
|
while bound < len(sorted_collection) and sorted_collection[bound] < item:
|
||||||
|
bound *= 2
|
||||||
|
|
||||||
|
left = bound // 2
|
||||||
|
right = min(bound, len(sorted_collection) - 1)
|
||||||
|
return binary_search_by_recursion(sorted_collection, item, left, right)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
||||||
|
|
||||||
|
# Manual testing
|
||||||
|
user_input = input("Enter numbers separated by commas: ").strip()
|
||||||
|
collection = sorted(int(item) for item in user_input.split(","))
|
||||||
|
target = int(input("Enter a number to search for: "))
|
||||||
|
result = exponential_search(sorted_collection=collection, item=target)
|
||||||
|
if result == -1:
|
||||||
|
print(f"{target} was not found in {collection}.")
|
||||||
|
else:
|
||||||
|
print(f"{target} was found at index {result} in {collection}.")
|
Loading…
Reference in New Issue
Block a user