Fix minor typing errors in maths/ (#8959)

* updating DIRECTORY.md

* types(maths): Fix pylance issues in maths

* reset(vsc): Reset settings changes

* Update maths/jaccard_similarity.py

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* revert(erosion_operation): Revert erosion_operation

* test(jaccard_similarity): Add doctest to test alternative_union

* types(newton_raphson): Add typehints to func bodies

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
Caeden Perelli-Harris 2023-08-15 22:27:41 +01:00 committed by GitHub
parent 7618a92fee
commit 490e645ed3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 65 additions and 36 deletions

View File

@ -21,6 +21,7 @@ def rgb2gray(rgb: np.array) -> np.array:
def gray2binary(gray: np.array) -> np.array:
"""
Return binary image from gray image
>>> gray2binary(np.array([[127, 255, 0]]))
array([[False, True, False]])
>>> gray2binary(np.array([[0]]))

View File

@ -10,12 +10,12 @@ def get_rotation(
) -> np.ndarray:
"""
Get image rotation
:param img: np.array
:param img: np.ndarray
:param pt1: 3x2 list
:param pt2: 3x2 list
:param rows: columns image shape
:param cols: rows image shape
:return: np.array
:return: np.ndarray
"""
matrix = cv2.getAffineTransform(pt1, pt2)
return cv2.warpAffine(img, matrix, (rows, cols))

View File

@ -19,7 +19,9 @@ def median(nums: list) -> int | float:
Returns:
Median.
"""
sorted_list = sorted(nums)
# The sorted function returns list[SupportsRichComparisonT@sorted]
# which does not support `+`
sorted_list: list[int] = sorted(nums)
length = len(sorted_list)
mid_index = length >> 1
return (

View File

@ -5,7 +5,7 @@ import numpy as np
def euler_modified(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.array:
) -> np.ndarray:
"""
Calculate solution at each step to an ODE using Euler's Modified Method
The Euler Method is straightforward to implement, but can't give accurate solutions.

View File

@ -13,7 +13,7 @@ This script is inspired by a corresponding research paper.
import numpy as np
def sigmoid(vector: np.array) -> np.array:
def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Mathematical function sigmoid takes a vector x of K real numbers as input and
returns 1/ (1 + e^-x).
@ -25,7 +25,7 @@ def sigmoid(vector: np.array) -> np.array:
return 1 / (1 + np.exp(-vector))
def gaussian_error_linear_unit(vector: np.array) -> np.array:
def gaussian_error_linear_unit(vector: np.ndarray) -> np.ndarray:
"""
Implements the Gaussian Error Linear Unit (GELU) function

View File

@ -14,7 +14,11 @@ Jaccard similarity is widely used with MinHashing.
"""
def jaccard_similarity(set_a, set_b, alternative_union=False):
def jaccard_similarity(
set_a: set[str] | list[str] | tuple[str],
set_b: set[str] | list[str] | tuple[str],
alternative_union=False,
):
"""
Finds the jaccard similarity between two sets.
Essentially, its intersection over union.
@ -37,41 +41,52 @@ def jaccard_similarity(set_a, set_b, alternative_union=False):
>>> set_b = {'c', 'd', 'e', 'f', 'h', 'i'}
>>> jaccard_similarity(set_a, set_b)
0.375
>>> jaccard_similarity(set_a, set_a)
1.0
>>> jaccard_similarity(set_a, set_a, True)
0.5
>>> set_a = ['a', 'b', 'c', 'd', 'e']
>>> set_b = ('c', 'd', 'e', 'f', 'h', 'i')
>>> jaccard_similarity(set_a, set_b)
0.375
>>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
>>> set_b = ['a', 'b', 'c', 'd', 'e']
>>> jaccard_similarity(set_a, set_b)
0.375
>>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
>>> set_b = ['a', 'b', 'c', 'd']
>>> jaccard_similarity(set_a, set_b, True)
0.2
>>> set_a = {'a', 'b'}
>>> set_b = ['c', 'd']
>>> jaccard_similarity(set_a, set_b)
Traceback (most recent call last):
...
ValueError: Set a and b must either both be sets or be either a list or a tuple.
"""
if isinstance(set_a, set) and isinstance(set_b, set):
intersection = len(set_a.intersection(set_b))
intersection_length = len(set_a.intersection(set_b))
if alternative_union:
union = len(set_a) + len(set_b)
union_length = len(set_a) + len(set_b)
else:
union = len(set_a.union(set_b))
union_length = len(set_a.union(set_b))
return intersection / union
return intersection_length / union_length
if isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
elif isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
intersection = [element for element in set_a if element in set_b]
if alternative_union:
union = len(set_a) + len(set_b)
return len(intersection) / union
return len(intersection) / (len(set_a) + len(set_b))
else:
union = set_a + [element for element in set_b if element not in set_a]
# Cast set_a to list because tuples cannot be mutated
union = list(set_a) + [element for element in set_b if element not in set_a]
return len(intersection) / len(union)
return len(intersection) / len(union)
return None
raise ValueError(
"Set a and b must either both be sets or be either a list or a tuple."
)
if __name__ == "__main__":

View File

@ -7,10 +7,14 @@
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
"""
import math as m
from collections.abc import Callable
DerivativeFunc = Callable[[float], float]
def calc_derivative(f, a, h=0.001):
def calc_derivative(f: DerivativeFunc, a: float, h: float = 0.001) -> float:
"""
Calculates derivative at point a for function f using finite difference
method
@ -18,7 +22,14 @@ def calc_derivative(f, a, h=0.001):
return (f(a + h) - f(a - h)) / (2 * h)
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=False):
def newton_raphson(
f: DerivativeFunc,
x0: float = 0,
maxiter: int = 100,
step: float = 0.0001,
maxerror: float = 1e-6,
logsteps: bool = False,
) -> tuple[float, float, list[float]]:
a = x0 # set the initial guess
steps = [a]
error = abs(f(a))
@ -36,7 +47,7 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=Fa
if logsteps:
# If logstep is true, then log intermediate steps
return a, error, steps
return a, error
return a, error, []
if __name__ == "__main__":

View File

@ -1,7 +1,7 @@
import numpy as np
def qr_householder(a):
def qr_householder(a: np.ndarray):
"""Return a QR-decomposition of the matrix A using Householder reflection.
The QR-decomposition decomposes the matrix A of shape (m, n) into an

View File

@ -11,7 +11,7 @@ https://en.wikipedia.org/wiki/Sigmoid_function
import numpy as np
def sigmoid(vector: np.array) -> np.array:
def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Implements the sigmoid function

View File

@ -12,12 +12,12 @@ https://en.wikipedia.org/wiki/Activation_function
import numpy as np
def tangent_hyperbolic(vector: np.array) -> np.array:
def tangent_hyperbolic(vector: np.ndarray) -> np.ndarray:
"""
Implements the tanh function
Parameters:
vector: np.array
vector: np.ndarray
Returns:
tanh (np.array): The input numpy array after applying tanh.