From 4af521504227c4cada677538163033779cd4df07 Mon Sep 17 00:00:00 2001 From: iradonov <86876427+iradonov@users.noreply.github.com> Date: Mon, 18 Oct 2021 19:46:47 +0300 Subject: [PATCH] added Schur complement to linear algebra (#4793) * added schur complement and tests to linear algebra * updated according to checklist * updated variable names and typing * added two testcases for input validation * fixed import order Co-authored-by: Ivan Radonov --- linear_algebra/src/schur_complement.py | 94 ++++++++++++++++++++++++++ 1 file changed, 94 insertions(+) create mode 100644 linear_algebra/src/schur_complement.py diff --git a/linear_algebra/src/schur_complement.py b/linear_algebra/src/schur_complement.py new file mode 100644 index 000000000..f3cb736d9 --- /dev/null +++ b/linear_algebra/src/schur_complement.py @@ -0,0 +1,94 @@ +import unittest + +import numpy as np + + +def schur_complement( + mat_a: np.ndarray, + mat_b: np.ndarray, + mat_c: np.ndarray, + pseudo_inv: np.ndarray = None, +) -> np.ndarray: + """ + Schur complement of a symmetric matrix X given as a 2x2 block matrix + consisting of matrices A, B and C. + Matrix A must be quadratic and non-singular. + In case A is singular, a pseudo-inverse may be provided using + the pseudo_inv argument. + + Link to Wiki: https://en.wikipedia.org/wiki/Schur_complement + See also Convex Optimization – Boyd and Vandenberghe, A.5.5 + >>> import numpy as np + >>> a = np.array([[1, 2], [2, 1]]) + >>> b = np.array([[0, 3], [3, 0]]) + >>> c = np.array([[2, 1], [6, 3]]) + >>> schur_complement(a, b, c) + array([[ 5., -5.], + [ 0., 6.]]) + """ + shape_a = np.shape(mat_a) + shape_b = np.shape(mat_b) + shape_c = np.shape(mat_c) + + if shape_a[0] != shape_b[0]: + raise ValueError( + f"Expected the same number of rows for A and B. \ + Instead found A of size {shape_a} and B of size {shape_b}" + ) + + if shape_b[1] != shape_c[1]: + raise ValueError( + f"Expected the same number of columns for B and C. \ + Instead found B of size {shape_b} and C of size {shape_c}" + ) + + a_inv = pseudo_inv + if a_inv is None: + try: + a_inv = np.linalg.inv(mat_a) + except np.linalg.LinAlgError: + raise ValueError( + "Input matrix A is not invertible. Cannot compute Schur complement." + ) + + return mat_c - mat_b.T @ a_inv @ mat_b + + +class TestSchurComplement(unittest.TestCase): + def test_schur_complement(self) -> None: + a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) + b = np.array([[0, 3], [3, 0], [2, 3]]) + c = np.array([[2, 1], [6, 3]]) + + s = schur_complement(a, b, c) + + input_matrix = np.block([[a, b], [b.T, c]]) + + det_x = np.linalg.det(input_matrix) + det_a = np.linalg.det(a) + det_s = np.linalg.det(s) + + self.assertAlmostEqual(det_x, det_a * det_s) + + def test_improper_a_b_dimensions(self) -> None: + a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) + b = np.array([[0, 3], [3, 0], [2, 3]]) + c = np.array([[2, 1], [6, 3]]) + + with self.assertRaises(ValueError): + schur_complement(a, b, c) + + def test_improper_b_c_dimensions(self) -> None: + a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) + b = np.array([[0, 3], [3, 0], [2, 3]]) + c = np.array([[2, 1, 3], [6, 3, 5]]) + + with self.assertRaises(ValueError): + schur_complement(a, b, c) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + unittest.main()